BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34868107)

  • 1. Processing of Airborne Green Leaf Volatiles for Their Glycosylation in the Exposed Plants.
    Sugimoto K; Iijima Y; Takabayashi J; Matsui K
    Front Plant Sci; 2021; 12():721572. PubMed ID: 34868107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of
    Yamauchi Y; Matsuda A; Matsuura N; Mizutani M; Sugimoto Y
    J Pestic Sci; 2018 Aug; 43(3):207-213. PubMed ID: 30363142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles.
    Tanaka T; Ikeda A; Shiojiri K; Ozawa R; Shiki K; Nagai-Kunihiro N; Fujita K; Sugimoto K; Yamato KT; Dohra H; Ohnishi T; Koeduka T; Matsui K
    Plant Physiol; 2018 Oct; 178(2):552-564. PubMed ID: 30126866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of volatile alcohols into their glucosides in Arabidopsis.
    Sugimoto K; Matsui K; Takabayashi J
    Commun Integr Biol; 2015; 8(1):e992731. PubMed ID: 26629260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements.
    Matsui K; Sugimoto K; Mano J; Ozawa R; Takabayashi J
    PLoS One; 2012; 7(4):e36433. PubMed ID: 22558466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize.
    Yan ZG; Wang CZ
    Phytochemistry; 2006 Jan; 67(1):34-42. PubMed ID: 16310233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green leaf volatiles enhance methyl jasmonate response in Arabidopsis.
    Hirao T; Okazawa A; Harada K; Kobayashi A; Muranaka T; Hirata K
    J Biosci Bioeng; 2012 Nov; 114(5):540-5. PubMed ID: 22795666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense.
    Sugimoto K; Matsui K; Iijima Y; Akakabe Y; Muramoto S; Ozawa R; Uefune M; Sasaki R; Alamgir KM; Akitake S; Nobuke T; Galis I; Aoki K; Shibata D; Takabayashi J
    Proc Natl Acad Sci U S A; 2014 May; 111(19):7144-9. PubMed ID: 24778218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation ofMicroplitis croceipes (Hymenoptera: Braconidae) to green leaf volatiles: Dose-response curves.
    Whitman DW; Eller FJ
    J Chem Ecol; 1992 Oct; 18(10):1743-53. PubMed ID: 24254716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Leaf Volatiles in Plant Signaling and Response.
    Matsui K; Koeduka T
    Subcell Biochem; 2016; 86():427-43. PubMed ID: 27023245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol.
    Xin Z; Ge L; Chen S; Sun X
    J Plant Res; 2019 Mar; 132(2):285-293. PubMed ID: 30758750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emission of herbivore-induced volatiles in absence of a herbivore--response of Zea mays to green leaf volatiles and terpenoids.
    Ruther J; Fürstenau B
    Z Naturforsch C J Biosci; 2005; 60(9-10):743-56. PubMed ID: 16320618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal closure prevents xylem transport of green leaf volatiles and impairs their systemic function in plants.
    Maleki FA; Seidl-Adams I; Fahimi A; Peiffer ML; Kersch-Becker MF; Felton GW; Tumlinson JH
    Plant Cell Environ; 2024 Jan; 47(1):122-139. PubMed ID: 37828776
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Mao K; Li C; Zhai H; Wang Y; Lou Y; Xue W; Zhou G
    Plants (Basel); 2024 May; 13(11):. PubMed ID: 38891303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.
    Zebelo SA; Matsui K; Ozawa R; Maffei ME
    Plant Sci; 2012 Nov; 196():93-100. PubMed ID: 23017903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of the Green Leaf Volatile (
    Yactayo-Chang JP; Hunter CT; Alborn HT; Christensen SA; Block AK
    Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.
    Xin ZJ; Li XW; Bian L; Sun XL
    Bull Entomol Res; 2017 Feb; 107(1):77-84. PubMed ID: 27444230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana.
    D'Auria JC; Pichersky E; Schaub A; Hansel A; Gershenzon J
    Plant J; 2007 Jan; 49(2):194-207. PubMed ID: 17163881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent exposure to traces of green leaf volatiles triggers the production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in exposed plants.
    Ozawa R; Shiojiri K; Matsui K; Takabayashi J
    Plant Signal Behav; 2013 Nov; 8(11):e27013. PubMed ID: 24301200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis.
    Scala A; Mirabella R; Mugo C; Matsui K; Haring MA; Schuurink RC
    Front Plant Sci; 2013; 4():74. PubMed ID: 23630530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.