These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34868161)

  • 41. [Advances in astaxanthin biosynthesis in Haematococcus pluvialis].
    Jiang S; Tong S
    Sheng Wu Gong Cheng Xue Bao; 2019 Jun; 35(6):988-997. PubMed ID: 31231995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy.
    Xi T; Kim DG; Roh SW; Choi JS; Choi YE
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6231-6238. PubMed ID: 26860938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-temperature plasma promotes growth of Haematococcus pluvialis and accumulation of astaxanthin by regulating histone H3 lysine 4 tri-methylation.
    Li L; Chen Z; Acheampong A; Huang Q
    Bioresour Technol; 2022 Jan; 343():126095. PubMed ID: 34624470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sodium chloride stimulates the biomass and astaxanthin production by Haematococcus pluvialis via a two-stage cultivation strategy.
    Li Q; You J; Qiao T; Zhong DB; Yu X
    Bioresour Technol; 2022 Jan; 344(Pt A):126214. PubMed ID: 34715336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Histone Acetyltransferase
    Huang D; Liu W; Hu Q; Li H; Wang C
    Front Plant Sci; 2022; 13():903764. PubMed ID: 35668806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a RelA/SpoT Homolog and Its Possible Role in the Accumulation of Astaxanthin in
    Jin H; Lao YM; Zhou J; Cai ZH
    Front Plant Sci; 2022; 13():796997. PubMed ID: 35222463
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoprotective carbon redistribution in mixotrophic Haematococcus pluvialis under high light stress.
    Wang B; Pan X; Wang F; Liu L; Jia J
    Bioresour Technol; 2022 Oct; 362():127761. PubMed ID: 35961507
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative physiological and metabolomic analyses of the hyper-accumulation of astaxanthin and lipids in Haematococcus pluvialis upon treatment with butylated hydroxyanisole.
    Ding W; Li Q; Han B; Zhao Y; Geng S; Ning D; Ma T; Yu X
    Bioresour Technol; 2019 Nov; 292():122002. PubMed ID: 31437797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Disodium 2-oxoglutarate promotes carbon flux into astaxanthin and fatty acid biosynthesis pathways in Haematococcus.
    Lu Z; Dai J; Zheng L; Teng Z; Zhang Q; Qiu D; Song L
    Bioresour Technol; 2020 Mar; 299():122612. PubMed ID: 31874452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ethanol induced jasmonate pathway promotes astaxanthin hyperaccumulation in Haematococcus pluvialis.
    Liu YH; Alimujiang A; Wang X; Luo SW; Balamurugan S; Yang WD; Liu JS; Zhang L; Li HY
    Bioresour Technol; 2019 Oct; 289():121720. PubMed ID: 31271916
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative de novo transcriptome analysis and random UV mutagenesis: application in high biomass and astaxanthin production enhancement for Haematococcus pluvialis.
    Telli M; Ünlü ES
    Mol Biol Rep; 2023 Oct; 50(10):8133-8143. PubMed ID: 37550538
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Review on
    Oslan SNH; Shoparwe NF; Yusoff AH; Rahim AA; Chang CS; Tan JS; Oslan SN; Arumugam K; Ariff AB; Sulaiman AZ; Mohamed MS
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33578851
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An innovative protocol to select the best growth phase for astaxanthin biosynthesis in
    Radice RP; Fiorentino R; De Luca M; Limongi AR; Viviano E; Bermano G; Martelli G
    Biotechnol Rep (Amst); 2021 Sep; 31():e00655. PubMed ID: 34258244
    [No Abstract]   [Full Text] [Related]  

  • 54. Myo-inositol facilitates astaxanthin and lipid coproduction in Haematococcus pluvialis by regulating oxidative stress and ethylene signalling.
    Li Q; Zhang X; Zhao Y; Gao H; Li L; Zhang Y; Yu X
    Bioresour Technol; 2022 Dec; 366():128222. PubMed ID: 36328171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances.
    Kim B; Youn Lee S; Lakshmi Narasimhan A; Kim S; Oh YK
    Bioresour Technol; 2022 Jan; 343():126124. PubMed ID: 34653624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis.
    Domínguez-Bocanegra AR; Guerrero Legarreta I; Martinez Jeronimo F; Tomasini Campocosio A
    Bioresour Technol; 2004 Apr; 92(2):209-14. PubMed ID: 14693455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative Proteome Profiling of Extracellular Vesicles from Three Growth Phases of
    Hu Q; Wang Y; Wang C; Yan X
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancement of microalga Haematococcus pluvialis growth and astaxanthin production by electrical treatment.
    Kim JY; Lee C; Jeon MS; Park J; Choi YE
    Bioresour Technol; 2018 Nov; 268():815-819. PubMed ID: 30100110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differences between Motile and Nonmotile Cells of
    Li F; Cai M; Lin M; Huang X; Wang J; Ke H; Zheng X; Chen D; Wang C; Wu S; An Y
    Mar Drugs; 2019 Jan; 17(1):. PubMed ID: 30634492
    [No Abstract]   [Full Text] [Related]  

  • 60. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture.
    Del Río E; Acién FG; García-Malea MC; Rivas J; Molina-Grima E; Guerrero MG
    Biotechnol Bioeng; 2005 Sep; 91(7):808-15. PubMed ID: 15937954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.