BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 34868226)

  • 1. RNF4 Regulates the BLM Helicase in Recovery From Replication Fork Collapse.
    Ellis N; Zhu J; Yagle MK; Yang WC; Huang J; Kwako A; Seidman MM; Matunis MJ
    Front Genet; 2021; 12():753535. PubMed ID: 34868226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BLM Sumoylation Is Required for Replication Stability and Normal Fork Velocity During DNA Replication.
    de Renty C; Pond KW; Yagle MK; Ellis NA
    Front Mol Biosci; 2022; 9():875102. PubMed ID: 35847987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells.
    Ragland RL; Patel S; Rivard RS; Smith K; Peters AA; Bielinsky AK; Brown EJ
    Genes Dev; 2013 Oct; 27(20):2259-73. PubMed ID: 24142876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BLM SUMOylation regulates ssDNA accumulation at stalled replication forks.
    Ouyang KJ; Yagle MK; Matunis MJ; Ellis NA
    Front Genet; 2013; 4():167. PubMed ID: 24027577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SUMO modification regulates BLM and RAD51 interaction at damaged replication forks.
    Ouyang KJ; Woo LL; Zhu J; Huo D; Matunis MJ; Ellis NA
    PLoS Biol; 2009 Dec; 7(12):e1000252. PubMed ID: 19956565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair.
    Galanty Y; Belotserkovskaya R; Coates J; Jackson SP
    Genes Dev; 2012 Jun; 26(11):1179-95. PubMed ID: 22661229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the SUMO-related enzymes, PIAS1, PIAS4, and RNF4, in DNA double-strand break repair by homologous recombination.
    Han MM; Hirakawa M; Yamauchi M; Matsuda N
    Biochem Biophys Res Commun; 2022 Feb; 591():95-101. PubMed ID: 35007836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNF4 is required for DNA double-strand break repair in vivo.
    Vyas R; Kumar R; Clermont F; Helfricht A; Kalev P; Sotiropoulou P; Hendriks IA; Radaelli E; Hochepied T; Blanpain C; Sablina A; van Attikum H; Olsen JV; Jochemsen AG; Vertegaal AC; Marine JC
    Cell Death Differ; 2013 Mar; 20(3):490-502. PubMed ID: 23197296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Krüppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress.
    Kuo CY; Li X; Kong XQ; Luo C; Chang CC; Chung Y; Shih HM; Li KK; Ann DK
    J Biol Chem; 2014 Jul; 289(30):20757-72. PubMed ID: 24907272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.
    Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T
    Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling.
    Sidorova JM; Kehrli K; Mao F; Monnat R
    DNA Repair (Amst); 2013 Feb; 12(2):128-39. PubMed ID: 23253856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Drosophila Werner exonuclease participates in an exonuclease-independent response to replication stress.
    Bolterstein E; Rivero R; Marquez M; McVey M
    Genetics; 2014 Jun; 197(2):643-52. PubMed ID: 24709634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNF4 controls the extent of replication fork reversal to preserve genome stability.
    Ding L; Luo Y; Tian T; Chen X; Yang Y; Bu M; Han J; Yang B; Yan H; Liu T; Wu M; Zhang G; Xu Y; Zhu S; Huen MSY; Mao G; Huang J
    Nucleic Acids Res; 2022 Jun; 50(10):5672-5687. PubMed ID: 35640614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes.
    Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P
    Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of SUMO-targeted ubiquitin ligases Slx5-Slx8/RNF4 alters RecQ-like helicase Sgs1/BLM localization in yeast and human cells.
    Böhm S; Mihalevic MJ; Casal MA; Bernstein KA
    DNA Repair (Amst); 2015 Feb; 26():1-14. PubMed ID: 25588990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage.
    Yin Y; Seifert A; Chua JS; Maure JF; Golebiowski F; Hay RT
    Genes Dev; 2012 Jun; 26(11):1196-208. PubMed ID: 22661230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ataxin-3 consolidates the MDC1-dependent DNA double-strand break response by counteracting the SUMO-targeted ubiquitin ligase RNF4.
    Pfeiffer A; Luijsterburg MS; Acs K; Wiegant WW; Helfricht A; Herzog LK; Minoia M; Böttcher C; Salomons FA; van Attikum H; Dantuma NP
    EMBO J; 2017 Apr; 36(8):1066-1083. PubMed ID: 28275011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNF4 sustains Myc-driven tumorigenesis by facilitating DNA replication.
    Her J; Zheng H; Bunting SF
    J Clin Invest; 2024 Mar; 134(10):. PubMed ID: 38530355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hSSB1 associates with and promotes stability of the BLM helicase.
    Croft LV; Ashton NW; Paquet N; Bolderson E; O'Byrne KJ; Richard DJ
    BMC Mol Biol; 2017 May; 18(1):13. PubMed ID: 28506294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.