BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34868228)

  • 1. Identification of Six Prognostic Genes in EGFR-Mutant Lung Adenocarcinoma Using Structure Network Algorithms.
    Zhang H; Lu D; Li Q; Lu F; Zhang J; Wang Z; Lu X; Wang J
    Front Genet; 2021; 12():755245. PubMed ID: 34868228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weighted gene coexpression network analysis identifies hub genes related to KRAS mutant lung adenocarcinoma.
    Dai D; Shi R; Han S; Jin H; Wang X
    Medicine (Baltimore); 2020 Aug; 99(32):e21478. PubMed ID: 32769881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of LGR4 as a prognostic biomarker in KRAS-mutant lung adenocarcinoma: Evidence from integrated bioinformatics analysis.
    Dodin Y
    Medicine (Baltimore); 2023 Nov; 102(46):e36084. PubMed ID: 37986325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted gene co-expression network analysis of hub genes in lung adenocarcinoma.
    Luo X; Feng L; Xu W; Bai X; Wu M
    Evol Bioinform Online; 2021; 17():11769343211009898. PubMed ID: 33911849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted Gene Coexpression Network Analysis of Features That Control Cancer Stem Cells Reveals Prognostic Biomarkers in Lung Adenocarcinoma.
    Liao Y; Wang Y; Cheng M; Huang C; Fan X
    Front Genet; 2020; 11():311. PubMed ID: 32391047
    [No Abstract]   [Full Text] [Related]  

  • 6. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma.
    Wang F; Zhao N; Gao G; Deng HB; Wang ZH; Deng LL; Yang Y; Lu C
    J Cancer Res Clin Oncol; 2020 Nov; 146(11):2851-2859. PubMed ID: 32743759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of TPX2-related ceRNA network as prognostic biomarkers in lung adenocarcinoma.
    Huo C; Zhang MY; Li R; Zhou XJ; Liu TT; Li JP; Liu X; Qu YQ
    Int J Med Sci; 2020; 17(16):2427-2439. PubMed ID: 33029085
    [No Abstract]   [Full Text] [Related]  

  • 8. Low expression of CHRDL1 and SPARCL1 predicts poor prognosis of lung adenocarcinoma based on comprehensive analysis and immunohistochemical validation.
    Deng H; Hang Q; Shen D; Zhang Y; Chen M
    Cancer Cell Int; 2021 May; 21(1):259. PubMed ID: 33980221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prognostic nomogram for lung adenocarcinoma based on immune-infiltrating Treg-related genes: from bench to bedside.
    Wang X; Xiao Z; Gong J; Liu Z; Zhang M; Zhang Z
    Transl Lung Cancer Res; 2021 Jan; 10(1):167-182. PubMed ID: 33569302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases.
    Yu Y; Tian X
    Medicine (Baltimore); 2020 May; 99(19):e20183. PubMed ID: 32384511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a Four-Gene Signature With Prognostic Significance in Endometrial Cancer Using Weighted-Gene Correlation Network Analysis.
    Huang S; Pang L; Wei C
    Front Genet; 2021; 12():678780. PubMed ID: 34616422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma.
    Guo T; Ma H; Zhou Y
    PeerJ; 2019; 7():e7313. PubMed ID: 31333911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid metabolism gene-wide profile and survival signature of lung adenocarcinoma.
    Li J; Li Q; Su Z; Sun Q; Zhao Y; Feng T; Jiang J; Zhang F; Ma H
    Lipids Health Dis; 2020 Oct; 19(1):222. PubMed ID: 33050938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying M1-like macrophage related genes for prognosis prediction in lung adenocarcinoma based on a gene co-expression network.
    Wang Z; Yan S; Yang Y; Luo X; Wang X; Tang K; Zhao J; He Y; Bian L
    Heliyon; 2023 Jan; 9(1):e12798. PubMed ID: 36711278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Hub Genes as Biomarkers Correlated with the Proliferation and Prognosis in Lung Cancer: A Weighted Gene Co-Expression Network Analysis.
    Xu X; Xu L; Huang H; Li J; Dong S; Jin L; Ma Z; Li L
    Biomed Res Int; 2020; 2020():3416807. PubMed ID: 32596300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Potential Mechanisms Associated with Non-small Cell Lung Cancer.
    Shi Y; Zhu S; Yang J; Shao M; Ding W; Jiang W; Sun X; Yao N
    J Comput Biol; 2020 Sep; 27(9):1433-1442. PubMed ID: 32048869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Five Autophagy Subtype-Related Gene Expression Pattern for Improving the Prognosis of Lung Adenocarcinoma.
    Zhang MY; Huo C; Liu JY; Shi ZE; Zhang WD; Qu JJ; Yue YL; Qu YQ
    Front Cell Dev Biol; 2021; 9():756911. PubMed ID: 34869345
    [No Abstract]   [Full Text] [Related]  

  • 18. Identification of Hub Genes in High-Grade Serous Ovarian Cancer Using Weighted Gene Co-Expression Network Analysis.
    Wu M; Sun Y; Wu J; Liu G
    Med Sci Monit; 2020 Mar; 26():e922107. PubMed ID: 32180586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of Single-Cell RNA Sequencing and Bulk RNA Sequencing Data to Establish and Validate a Prognostic Model for Patients With Lung Adenocarcinoma.
    Jiang A; Wang J; Liu N; Zheng X; Li Y; Ma Y; Zheng H; Chen X; Fan C; Zhang R; Fu X; Yao Y
    Front Genet; 2022; 13():833797. PubMed ID: 35154287
    [No Abstract]   [Full Text] [Related]  

  • 20. Elevated TOP2A and UBE2C expressions correlate with poor prognosis in patients with surgically resected lung adenocarcinoma: a study based on immunohistochemical analysis and bioinformatics.
    Guo W; Sun S; Guo L; Song P; Xue X; Zhang H; Zhang G; Wang Z; Qiu B; Tan F; Xue Q; Gao Y; Gao S; He J
    J Cancer Res Clin Oncol; 2020 Apr; 146(4):821-841. PubMed ID: 32103339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.