BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34868919)

  • 1. Gene Co-Expression in Breast Cancer: A Matter of Distance.
    González-Espinoza A; Zamora-Fuentes J; Hernández-Lemus E; Espinal-Enríquez J
    Front Oncol; 2021; 11():726493. PubMed ID: 34868919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Co-expression Is Distance-Dependent in Breast Cancer.
    García-Cortés D; de Anda-Jáuregui G; Fresno C; Hernández-Lemus E; Espinal-Enríquez J
    Front Oncol; 2020; 10():1232. PubMed ID: 32850369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminal A Breast Cancer Co-expression Network: Structural and Functional Alterations.
    García-Cortés D; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2021; 12():629475. PubMed ID: 33959148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Long Distance Co-Expression in Lung Cancer.
    Andonegui-Elguera SD; Zamora-Fuentes JM; Espinal-Enríquez J; Hernández-Lemus E
    Front Genet; 2021; 12():625741. PubMed ID: 33777098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Transcription Factors in the Loss of Inter-Chromosomal Co-Expression for Breast Cancer Subtypes.
    Trujillo-Ortíz R; Espinal-Enríquez J; Hernández-Lemus E
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNVs in 8q24.3 do not influence gene co-expression in breast cancer subtypes.
    Hernández-Gómez C; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2023; 14():1141011. PubMed ID: 37274786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. k-core genes underpin structural features of breast cancer.
    Dorantes-Gilardi R; García-Cortés D; Hernández-Lemus E; Espinal-Enríquez J
    Sci Rep; 2021 Aug; 11(1):16284. PubMed ID: 34381069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Expression and Co-expression Networks Are Strongly Altered Through Stages in Clear Cell Renal Carcinoma.
    Zamora-Fuentes JM; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2020; 11():578679. PubMed ID: 33240325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Copy Number Variants in Gene Co-Expression Patterns for Luminal B Breast Tumors.
    Hernández-Gómez C; Hernández-Lemus E; Espinal-Enríquez J
    Front Genet; 2022; 13():806607. PubMed ID: 35432489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The integrative epigenomic-transcriptomic landscape of ER positive breast cancer.
    Gao Y; Jones A; Fasching PA; Ruebner M; Beckmann MW; Widschwendter M; Teschendorff AE
    Clin Epigenetics; 2015; 7():126. PubMed ID: 26664652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Omic Regulation of the PAM50 Gene Signature in Breast Cancer Molecular Subtypes.
    Ochoa S; de Anda-Jáuregui G; Hernández-Lemus E
    Front Oncol; 2020; 10():845. PubMed ID: 32528899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lncRNA landscape in breast cancer reveals a potential role for AC009283.1 in proliferation and apoptosis in HER2-enriched subtype.
    Cedro-Tanda A; Ríos-Romero M; Romero-Córdoba S; Cisneros-Villanueva M; Rebollar-Vega RG; Alfaro-Ruiz LA; Jiménez-Morales S; Domínguez-Reyes C; Villegas-Carlos F; Tenorio-Torres A; Bautista-Piña V; Beltrán-Anaya FO; Hidalgo-Miranda A
    Sci Rep; 2020 Aug; 10(1):13146. PubMed ID: 32753692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Omics Analysis Detects Novel Prognostic Subgroups of Breast Cancer.
    Nguyen QH; Nguyen H; Nguyen T; Le DH
    Front Genet; 2020; 11():574661. PubMed ID: 33193681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of long non‑coding RNA‑mediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2‑ and triple negative breast cancer.
    Du Z; Gao W; Sun J; Li Y; Sun Y; Chen T; Ge S; Guo W
    Int J Mol Med; 2019 Sep; 44(3):1015-1025. PubMed ID: 31257479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gene expression landscape of breast cancer is shaped by tumor protein p53 status and epithelial-mesenchymal transition.
    Fredlund E; Staaf J; Rantala JK; Kallioniemi O; Borg A; Ringnér M
    Breast Cancer Res; 2012 Jul; 14(4):R113. PubMed ID: 22839103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices.
    Craig RA; Liao L
    BMC Bioinformatics; 2007 Jan; 8():6. PubMed ID: 17212819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
    Kao J; Salari K; Bocanegra M; Choi YL; Girard L; Gandhi J; Kwei KA; Hernandez-Boussard T; Wang P; Gazdar AF; Minna JD; Pollack JR
    PLoS One; 2009 Jul; 4(7):e6146. PubMed ID: 19582160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms.
    Sørlie T; Wang Y; Xiao C; Johnsen H; Naume B; Samaha RR; Børresen-Dale AL
    BMC Genomics; 2006 May; 7():127. PubMed ID: 16729877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRCA-Pathway: a structural integration and visualization system of TCGA breast cancer data on KEGG pathways.
    Kim I; Choi S; Kim S
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):42. PubMed ID: 29504910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.