These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34869015)
21. In Vivo Repeatability and Multiscanner Reproducibility of MRI Radiomics Features in Patients With Monoclonal Plasma Cell Disorders: A Prospective Bi-institutional Study. Wennmann M; Bauer F; Klein A; Chmelik J; Grözinger M; Rotkopf LT; Neher P; Gnirs R; Kurz FT; Nonnenmacher T; Sauer S; Weinhold N; Goldschmidt H; Kleesiek J; Bonekamp D; Weber TF; Delorme S; Maier-Hein K; Schlemmer HP; Götz M Invest Radiol; 2023 Apr; 58(4):253-264. PubMed ID: 36165988 [TBL] [Abstract][Full Text] [Related]
22. Repeatability and reproducibility of magnetic resonance imaging-based radiomic features in rectal cancer. Rai R; Barton MB; Chlap P; Liney G; Brink C; Vinod S; Heinke M; Trada Y; Holloway LC J Med Imaging (Bellingham); 2022 Jul; 9(4):044005. PubMed ID: 35992729 [No Abstract] [Full Text] [Related]
23. Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Zhong J; Xia Y; Chen Y; Li J; Lu W; Shi X; Feng J; Yan F; Yao W; Zhang H Eur Radiol; 2023 Feb; 33(2):812-824. PubMed ID: 36197579 [TBL] [Abstract][Full Text] [Related]
24. Quantifying the reproducibility and longitudinal repeatability of radiomics features in magnetic resonance Image-Guide accelerator Imaging: A phantom study. Yu H; Tang B; Fu Y; Wei W; He Y; Dai G; Xiao Q Eur J Radiol; 2024 Dec; 181():111735. PubMed ID: 39276402 [TBL] [Abstract][Full Text] [Related]
25. Prediction of treatment response to transarterial radioembolization of liver metastases: Radiomics analysis of pre-treatment cone-beam CT: A proof of concept study. Kobe A; Zgraggen J; Messmer F; Puippe G; Sartoretti T; Alkadhi H; Pfammatter T; Mannil M Eur J Radiol Open; 2021; 8():100375. PubMed ID: 34485629 [TBL] [Abstract][Full Text] [Related]
26. 4D radiomics: impact of 4D-CBCT image quality on radiomic analysis. Zhang Z; Huang M; Jiang Z; Chang Y; Torok J; Yin FF; Ren L Phys Med Biol; 2021 Feb; 66(4):045023. PubMed ID: 33361574 [TBL] [Abstract][Full Text] [Related]
27. Reproducibility Analysis of Radiomic Features on T2-weighted MR Images after Processing and Segmentation Alterations in Neuroblastoma Tumors. Veiga-Canuto D; Fernández-Patón M; Cerdà Alberich L; Jiménez Pastor A; Gomis Maya A; Carot Sierra JM; Sangüesa Nebot C; Martínez de Las Heras B; Pötschger U; Taschner-Mandl S; Neri E; Cañete A; Ladenstein R; Hero B; Alberich-Bayarri Á; Martí-Bonmatí L Radiol Artif Intell; 2024 Jul; 6(4):e230208. PubMed ID: 38864742 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of repeatability and reproducibility of radiomic features produced by the fan-beam kV-CT on a novel ring gantry-based PET/CT linear accelerator. Ketcherside T; Shi C; Chen Q; Leung D; Sundquist A; Huntzinger C; Court LE; Han C; Watkins T; Ladbury C; Williams TM; Liu A Med Phys; 2023 Jun; 50(6):3719-3725. PubMed ID: 36995245 [TBL] [Abstract][Full Text] [Related]
30. Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Zhong J; Pan Z; Chen Y; Wang L; Xia Y; Wang L; Li J; Lu W; Shi X; Feng J; Yan F; Zhang H; Yao W Insights Imaging; 2023 May; 14(1):79. PubMed ID: 37166511 [TBL] [Abstract][Full Text] [Related]
31. A novel loss function to reproduce texture features for deep learning-based MRI-to-CT synthesis. Yuan S; Liu Y; Wei R; Zhu J; Men K; Dai J Med Phys; 2024 Apr; 51(4):2695-2706. PubMed ID: 38043105 [TBL] [Abstract][Full Text] [Related]
32. Bone radiomics reproducibility: a three-centered study on the impacts of image contrast, edge enhancement, and latitude variations. Abdali SH; Afzali F; Baseri S; Abdalvand N; Abdollahi H Phys Eng Sci Med; 2022 Jun; 45(2):497-511. PubMed ID: 35389137 [TBL] [Abstract][Full Text] [Related]
33. Intra-scanner repeatability of quantitative imaging features in a 3D printed semi-anthropomorphic CT phantom. Muenzfeld H; Nowak C; Riedlberger S; Hartenstein A; Hamm B; Jahnke P; Penzkofer T Eur J Radiol; 2021 Aug; 141():109818. PubMed ID: 34157639 [TBL] [Abstract][Full Text] [Related]
34. Reliability and accuracy of three imaging software packages used for 3D analysis of the upper airway on cone beam computed tomography images. Chen H; van Eijnatten M; Wolff J; de Lange J; van der Stelt PF; Lobbezoo F; Aarab G Dentomaxillofac Radiol; 2017 Aug; 46(6):20170043. PubMed ID: 28467118 [TBL] [Abstract][Full Text] [Related]
35. Development and optimisation of a preclinical cone beam computed tomography-based radiomics workflow for radiation oncology research. Brown KH; Payan N; Osman S; Ghita M; Walls GM; Patallo IS; Schettino G; Prise KM; McGarry CK; Butterworth KT Phys Imaging Radiat Oncol; 2023 Apr; 26():100446. PubMed ID: 37252250 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of virtual monoenergetic images from kilovoltage peak images using wavelet loss enhanced CycleGAN for improving radiomics features reproducibility. Xu Z; Li M; Li B; Shu H Quant Imaging Med Surg; 2024 Mar; 14(3):2370-2390. PubMed ID: 38545083 [TBL] [Abstract][Full Text] [Related]
37. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
38. Quantifying Subresolution 3D Morphology of Bone with Clinical Computed Tomography. Karhula SS; Finnilä MAJ; Rytky SJO; Cooper DM; Thevenot J; Valkealahti M; Pritzker KPH; Haapea M; Joukainen A; Lehenkari P; Kröger H; Korhonen RK; Nieminen HJ; Saarakkala S Ann Biomed Eng; 2020 Feb; 48(2):595-605. PubMed ID: 31583552 [TBL] [Abstract][Full Text] [Related]
39. Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer. Korte JC; Cardenas C; Hardcastle N; Kron T; Wang J; Bahig H; Elgohari B; Ger R; Court L; Fuller CD; Ng SP Sci Rep; 2021 Sep; 11(1):17633. PubMed ID: 34480036 [TBL] [Abstract][Full Text] [Related]
40. Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis. Zhang Z; Huang M; Jiang Z; Chang Y; Lu K; Yin FF; Tran P; Wu D; Beltran C; Ren L Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35313293 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]