BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34869266)

  • 1. Construction of an Acetate Metabolic Pathway to Enhance Electron Generation of Engineered
    Zhang J; Chen Z; Liu C; Li J; An X; Wu D; Sun X; Zhang B; Fu L; Li F; Song H
    Front Bioeng Biotechnol; 2021; 9():757953. PubMed ID: 34869266
    [No Abstract]   [Full Text] [Related]  

  • 2. Engineering
    Li F; Li Y; Sun L; Li X; Yin C; An X; Chen X; Tian Y; Song H
    Biotechnol Biofuels; 2017; 10():196. PubMed ID: 28804512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Klebsiella pneumoniae-Shewanella oneidensis Consortium Enables Glycerol-Fed High-Performance Microbial Fuel Cells.
    Li F; Yin C; Sun L; Li Y; Guo X; Song H
    Biotechnol J; 2018 May; 13(5):e1700491. PubMed ID: 29044893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Microbial Consortia for High-Performance Cellulosic Hydrolyzates-Fed Microbial Fuel Cells.
    Li F; An X; Wu D; Xu J; Chen Y; Li W; Cao Y; Guo X; Lin X; Li C; Liu S; Song H
    Front Microbiol; 2019; 10():409. PubMed ID: 30936852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Shewanella oneidensis to efficiently harvest electricity power by co-utilizing glucose and lactate in thin stillage of liquor industry.
    Zhang J; Wu D; Zhao Y; Liu D; Guo X; Chen Y; Zhang C; Sun X; Guo J; Yuan D; Xiao D; Li F; Song H
    Sci Total Environ; 2023 Jan; 855():158696. PubMed ID: 36108833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ¹³C Pathway Analysis for the Role of Formate in Electricity Generation by Shewanella Oneidensis MR-1 Using Lactate in Microbial Fuel Cells.
    Luo S; Guo W; Nealson KH; Feng X; He Z
    Sci Rep; 2016 Feb; 6():20941. PubMed ID: 26868848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Cooperation in an Anaerobic Coculture.
    Kane AL; Szabo RE; Gralnick JA
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modular Engineering Strategy to Redirect Electron Flux into the Electron-Transfer Chain for Enhancing Extracellular Electron Transfer in
    Ding Q; Liu Q; Zhang Y; Li F; Song H
    ACS Synth Biol; 2023 Feb; 12(2):471-481. PubMed ID: 36457250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Shewanella biofilm promotes bioelectricity generation.
    Liu T; Yu YY; Deng XP; Ng CK; Cao B; Wang JY; Rice SA; Kjelleberg S; Song H
    Biotechnol Bioeng; 2015 Oct; 112(10):2051-9. PubMed ID: 25899863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synthetic microbial consortium of Shewanella and Bacillus for enhanced generation of bioelectricity.
    Liu T; Yu YY; Chen T; Chen WN
    Biotechnol Bioeng; 2017 Mar; 114(3):526-532. PubMed ID: 27596754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells.
    Kouzuma A; Kasai T; Hirose A; Watanabe K
    Front Microbiol; 2015; 6():609. PubMed ID: 26136738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
    Biffinger JC; Byrd JN; Dudley BL; Ringeisen BR
    Biosens Bioelectron; 2008 Jan; 23(6):820-6. PubMed ID: 17931851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor.
    Kane AL; Brutinel ED; Joo H; Maysonet R; VanDrisse CM; Kotloski NJ; Gralnick JA
    J Bacteriol; 2016 Apr; 198(8):1337-46. PubMed ID: 26883823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis.
    Yamasaki R; Maeda T; Wood TK
    Biotechnol Biofuels; 2018; 11():211. PubMed ID: 30061933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions.
    Choi D; Lee SB; Kim S; Min B; Choi IG; Chang IS
    Bioresour Technol; 2014 Feb; 154():59-66. PubMed ID: 24384311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis-MR1 under MFC and non-MFC conditions.
    Gomaa OM; Fapetu S; Kyazze G; Keshavarz T
    World J Microbiol Biotechnol; 2017 Mar; 33(3):56. PubMed ID: 28229332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.
    Leung DHL; Lim YS; Uma K; Pan GT; Lin JH; Chong S; Yang TC
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1170-1186. PubMed ID: 33200267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of gaseous o-xylene degradation in a microbial fuel cell by adding Shewanella oneidensis MR-1.
    You J; Deng Y; Chen H; Ye J; Zhang S; Zhao J
    Chemosphere; 2020 Aug; 252():126571. PubMed ID: 32224361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.