BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34869266)

  • 41. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silver nanoparticles boost charge-extraction efficiency in
    Cao B; Zhao Z; Peng L; Shiu HY; Ding M; Song F; Guan X; Lee CK; Huang J; Zhu D; Fu X; Wong GCL; Liu C; Nealson K; Weiss PS; Duan X; Huang Y
    Science; 2021 Sep; 373(6561):1336-1340. PubMed ID: 34529487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Theoretical exploration of optimal metabolic flux distributions for extracellular electron transfer by Shewanella oneidensis MR-1.
    Mao L; Verwoerd WS
    Biotechnol Biofuels; 2014; 7(1):118. PubMed ID: 25342966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isobutanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Park H; Seo HM; Kim JH; Bhatia SK; Sathiyanarayanan G; Song HS; Park SH; Choi KY; Sang BI; Yang YH
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2147-54. PubMed ID: 26280214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A biocompatible surface display approach in Shewanella promotes current output efficiency.
    Zhao J; Wang C; Liu J; Zhang N; Zhao Y; Zhao J; Wang X; Wei W
    Biosens Bioelectron; 2024 Sep; 259():116422. PubMed ID: 38797034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.
    Xu YS; Zheng T; Yong XY; Zhai DD; Si RW; Li B; Yu YY; Yong YC
    Bioresour Technol; 2016 Jul; 211():542-7. PubMed ID: 27038263
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148.
    Uno M; Phansroy N; Aso Y; Ohara H
    J Biosci Bioeng; 2017 Aug; 124(2):189-194. PubMed ID: 28434977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microbial fuel cells equipped with an iron-plated carbon-felt anode and Shewanella oneidensis MR-1 with corn steep liquor as a fuel.
    Phansroy N; Khawdas W; Watanabe K; Aso Y; Ohara H
    J Biosci Bioeng; 2018 Oct; 126(4):514-521. PubMed ID: 29764764
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth with high planktonic biomass in Shewanella oneidensis fuel cells.
    Lanthier M; Gregory KB; Lovley DR
    FEMS Microbiol Lett; 2008 Jan; 278(1):29-35. PubMed ID: 17995953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells.
    Newton GJ; Mori S; Nakamura R; Hashimoto K; Watanabe K
    Appl Environ Microbiol; 2009 Dec; 75(24):7674-81. PubMed ID: 19837834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activation of an Otherwise Silent Xylose Metabolic Pathway in Shewanella oneidensis.
    Sekar R; Shin HD; DiChristina TJ
    Appl Environ Microbiol; 2016 Jul; 82(13):3996-4005. PubMed ID: 27107127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B.
    Kim C; Song YE; Lee CR; Jeon BH; Kim JR
    J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1397-403. PubMed ID: 27412724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced transmembrane electron transfer in
    Jiang YJ; Hui S; Tian S; Chen Z; Chai Y; Jiang LP; Zhang JR; Zhu JJ
    Nanoscale Adv; 2022 Dec; 5(1):124-132. PubMed ID: 36605799
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expansion of carbon source utilization range of Shewanella oneidensis for efficient azo dye wastewater treatment through co-culture with Lactobacillus plantarum.
    Li Y; Liu G; Shi H
    Arch Microbiol; 2023 Jul; 205(8):297. PubMed ID: 37490061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An iTRAQ characterisation of the role of TolC during electron transfer from Shewanella oneidensis MR-1.
    Fowler GJ; Pereira-Medrano AG; Jaffe S; Pasternak G; Pham TK; Ledezma P; Hall ST; Ieropoulos IA; Wright PC
    Proteomics; 2016 Nov; 16(21):2764-2775. PubMed ID: 27599463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interspecific competition by non-exoelectrogenic Citrobacter freundii An1 boosts bioelectricity generation of exoelectrogenic Shewanella oneidensis MR-1.
    Xiao Y; Chen G; Chen Z; Bai R; Zhao B; Tian X; Wu Y; Zhou X; Zhao F
    Biosens Bioelectron; 2021 Dec; 194():113614. PubMed ID: 34500225
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contribution of direct electron transfer mechanisms to overall electron transfer in microbial fuel cells utilising Shewanella oneidensis as biocatalyst.
    Fapetu S; Keshavarz T; Clements M; Kyazze G
    Biotechnol Lett; 2016 Sep; 38(9):1465-73. PubMed ID: 27193895
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis.
    Nimje VR; Chen CY; Chen HR; Chen CC; Huang YM; Tseng MJ; Cheng KC; Chang YF
    Bioresour Technol; 2012 Jan; 104():315-23. PubMed ID: 22123299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells.
    Zhao S; Li Y; Yin H; Liu Z; Luan E; Zhao F; Tang Z; Liu S
    Sci Adv; 2015 Nov; 1(10):e1500372. PubMed ID: 26702430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The
    Hou L; Zheng B; Jiang Z; Hu Y; Shi L; Dong Y; Jiang Y
    Microbiol Spectr; 2024 Jun; ():e0051224. PubMed ID: 38916364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.