BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34869266)

  • 61. Promoting Extracellular Electron Transfer of
    Sun W; Lin Z; Yu Q; Cheng S; Gao H
    Front Microbiol; 2021; 12():727709. PubMed ID: 34675900
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Butyrate-based n-butanol production from an engineered Shewanella oneidensis MR-1.
    Jeon JM; Song HS; Lee DG; Hong JW; Hong YG; Moon YM; Bhatia SK; Yoon JJ; Kim W; Yang YH
    Bioprocess Biosyst Eng; 2018 Aug; 41(8):1195-1204. PubMed ID: 29737409
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Electrochemical synthesis of formic acid from CO
    Le QAT; Kim HG; Kim YH
    Enzyme Microb Technol; 2018 Sep; 116():1-5. PubMed ID: 29887011
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Coupling riboflavin de novo biosynthesis and cytochrome expression for improving extracellular electron transfer efficiency in Shewanella oneidensis.
    Li Y; Li Y; Chen Y; Cheng M; Yu H; Song H; Cao Y
    Biotechnol Bioeng; 2022 Oct; 119(10):2806-2818. PubMed ID: 35798677
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization.
    Sun G; Thygesen A; Meyer AS
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4905-15. PubMed ID: 25794875
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
    Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Shewanella algae Relatives Capable of Generating Electricity from Acetate Contribute to Coastal-Sediment Microbial Fuel Cells Treating Complex Organic Matter.
    Inohana Y; Katsuya S; Koga R; Kouzuma A; Watanabe K
    Microbes Environ; 2020; 35(2):. PubMed ID: 32147604
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling.
    Tang YJ; Meadows AL; Kirby J; Keasling JD
    J Bacteriol; 2007 Feb; 189(3):894-901. PubMed ID: 17114268
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modular engineering to increase intracellular NAD(H/
    Li F; Li YX; Cao YX; Wang L; Liu CG; Shi L; Song H
    Nat Commun; 2018 Sep; 9(1):3637. PubMed ID: 30194293
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electron donation characteristics and interplays of major volatile fatty acids from anaerobically fermented organic matters in bioelectrochemical systems.
    Zhang Z; Li J; Hao X; Gu Z; Xia S
    Environ Technol; 2019 Jul; 40(18):2337-2344. PubMed ID: 29441823
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.
    Barchinger SE; Pirbadian S; Sambles C; Baker CS; Leung KM; Burroughs NJ; El-Naggar MY; Golbeck JH
    Appl Environ Microbiol; 2016 Sep; 82(17):5428-43. PubMed ID: 27342561
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor.
    Rosenbaum MA; Bar HY; Beg QK; Segrè D; Booth J; Cotta MA; Angenent LT
    Bioresour Technol; 2011 Feb; 102(3):2623-8. PubMed ID: 21036604
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Systematic Full-Cycle Engineering Microbial Biofilms to Boost Electricity Production in
    Li F; Tang R; Zhang B; Qiao C; Yu H; Liu Q; Zhang J; Shi L; Song H
    Research (Wash D C); 2023; 6():0081. PubMed ID: 36939407
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures.
    Watson VJ; Logan BE
    Biotechnol Bioeng; 2010 Feb; 105(3):489-98. PubMed ID: 19787640
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The influence of acidity on microbial fuel cells containing Shewanella oneidensis.
    Biffinger JC; Pietron J; Bretschger O; Nadeau LJ; Johnson GR; Williams CC; Nealson KH; Ringeisen BR
    Biosens Bioelectron; 2008 Dec; 24(4):906-11. PubMed ID: 18774288
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Long-Term Behavior of Defined Mixed Cultures of
    Engel C; Schattenberg F; Dohnt K; Schröder U; Müller S; Krull R
    Front Bioeng Biotechnol; 2019; 7():60. PubMed ID: 30972336
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electricity production from cellulose in a microbial fuel cell using a defined binary culture.
    Ren Z; Ward TE; Regan JM
    Environ Sci Technol; 2007 Jul; 41(13):4781-6. PubMed ID: 17695929
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4 °C.
    Dai K; Yan Y; Wang QT; Zheng SJ; Huang ZQ; Sun T; Zeng RJ; Zhang F
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4801-4811. PubMed ID: 35759034
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.