These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34869266)

  • 81. Role of electricity production in the anaerobic decolorization of dye mixture by exoelectrogenic bacterium Shewanella oneidensis MR-1.
    Cao DM; Xiao X; Wu YM; Ma XB; Wang MN; Wu YY; Du DL
    Bioresour Technol; 2013 May; 136():176-81. PubMed ID: 23567679
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A kinetic model describing Shewanella oneidensis MR-1 growth, substrate consumption, and product secretion.
    Tang YJ; Meadows AL; Keasling JD
    Biotechnol Bioeng; 2007 Jan; 96(1):125-33. PubMed ID: 16865732
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Active N dopant states of electrodes regulate extracellular electron transfer of Shewanella oneidensis MR-1 for bioelectricity generation: Experimental and theoretical investigations.
    Wang YX; Li WQ; He CS; Zhao HQ; Han JC; Liu XC; Mu Y
    Biosens Bioelectron; 2020 Jul; 160():112231. PubMed ID: 32469730
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 85. Optimization of the biological component of a bioelectrochemical cell.
    Cho EJ; Ellington AD
    Bioelectrochemistry; 2007 Jan; 70(1):165-72. PubMed ID: 16713750
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay.
    Biffinger J; Ribbens M; Ringeisen B; Pietron J; Finkel S; Nealson K
    Biotechnol Bioeng; 2009 Feb; 102(2):436-44. PubMed ID: 18767193
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Mechanisms of bioelectricity generation in Enterobacter aerogenes-based microbial fuel cells].
    Zhang JT; Zhou SG; Zhang LX; Lu N; Deng LF; Ni JR
    Huan Jing Ke Xue; 2009 Apr; 30(4):1215-20. PubMed ID: 19545032
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Electricity production by Geobacter sulfurreducens attached to electrodes.
    Bond DR; Lovley DR
    Appl Environ Microbiol; 2003 Mar; 69(3):1548-55. PubMed ID: 12620842
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells.
    Chen G; Xu R; Liu L; Shi H; Wang G; Wang G
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):8093-8106. PubMed ID: 29987384
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.
    Wang VB; Yam JK; Chua SL; Zhang Q; Cao B; Chye JL; Yang L
    ScientificWorldJournal; 2014; 2014():139653. PubMed ID: 25097866
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Aerobic Respiration and Its Regulation in the Metal Reducer
    Bertling K; Banerjee A; Saffarini D
    Front Microbiol; 2021; 12():723835. PubMed ID: 34566926
    [No Abstract]   [Full Text] [Related]  

  • 92. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation.
    Pinchuk GE; Hill EA; Geydebrekht OV; De Ingeniis J; Zhang X; Osterman A; Scott JH; Reed SB; Romine MF; Konopka AE; Beliaev AS; Fredrickson JK; Reed JL
    PLoS Comput Biol; 2010 Jun; 6(6):e1000822. PubMed ID: 20589080
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY.
    Müller J; Shukla S; Jost KA; Spormann AM
    BMC Microbiol; 2013 May; 13():119. PubMed ID: 23705927
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.
    Conley BE; Intile PJ; Bond DR; Gralnick JA
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30266730
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Shewanella oneidensis MR-1 fluxome under various oxygen conditions.
    Tang YJ; Hwang JS; Wemmer DE; Keasling JD
    Appl Environ Microbiol; 2007 Feb; 73(3):718-29. PubMed ID: 17098921
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis.
    Kotloski NJ; Gralnick JA
    mBio; 2013 Jan; 4(1):. PubMed ID: 23322638
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A 96-well high-throughput, rapid-screening platform of extracellular electron transfer in microbial fuel cells.
    Tahernia M; Mohammadifar M; Gao Y; Panmanee W; Hassett DJ; Choi S
    Biosens Bioelectron; 2020 Aug; 162():112259. PubMed ID: 32452395
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.
    Uría N; Muñoz Berbel X; Sánchez O; Muñoz FX; Mas J
    Environ Sci Technol; 2011 Dec; 45(23):10250-6. PubMed ID: 21981730
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell.
    Huang L; Gan L; Zhao Q; Logan BE; Lu H; Chen G
    Bioresour Technol; 2011 Oct; 102(19):8762-8. PubMed ID: 21824764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.