These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34869413)

  • 1. Abnormal Respiratory Sounds Classification Using Deep CNN Through Artificial Noise Addition.
    Zulfiqar R; Majeed F; Irfan R; Rauf HT; Benkhelifa E; Belkacem AN
    Front Med (Lausanne); 2021; 8():714811. PubMed ID: 34869413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database-HF_Lung_V1.
    Hsu FS; Huang SR; Huang CW; Huang CJ; Cheng YR; Chen CC; Hsiao J; Chen CW; Chen LC; Lai YC; Hsu BF; Lin NJ; Tsai WL; Wu YL; Tseng TL; Tseng CT; Chen YT; Lai F
    PLoS One; 2021; 16(7):e0254134. PubMed ID: 34197556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural networks based efficient approach for classification of lung diseases.
    Demir F; Sengur A; Bajaj V
    Health Inf Sci Syst; 2020 Dec; 8(1):4. PubMed ID: 31915523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of patients considering observation frequency of continuous and discontinuous adventitious sounds in lung sounds.
    Nakamura N; Yamashita M; Matsunaga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3457-3460. PubMed ID: 28269044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental Heart Sound Classification using the Continuous Wavelet Transform and Convolutional Neural Networks.
    Meintjes A; Lowe A; Legget M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():409-412. PubMed ID: 30440420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning.
    Kim Y; Hyon Y; Jung SS; Lee S; Yoo G; Chung C; Ha T
    Sci Rep; 2021 Aug; 11(1):17186. PubMed ID: 34433880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice.
    Lella KK; Pja A
    AIMS Public Health; 2021; 8(2):240-264. PubMed ID: 34017889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning approach for detecting drill bit failures from a small sound dataset.
    Tran T; Pham NT; Lundgren J
    Sci Rep; 2022 Jun; 12(1):9623. PubMed ID: 35688892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lightweight CNN Model for Detecting Respiratory Diseases From Lung Auscultation Sounds Using EMD-CWT-Based Hybrid Scalogram.
    Shuvo SB; Ali SN; Swapnil SI; Hasan T; Bhuiyan MIH
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2595-2603. PubMed ID: 33373309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic adventitious respiratory sound analysis: A systematic review.
    Pramono RXA; Bowyer S; Rodriguez-Villegas E
    PLoS One; 2017; 12(5):e0177926. PubMed ID: 28552969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of lung sounds using scalogram representation of sound segments and convolutional neural network.
    Pham Thi Viet H; Nguyen Thi Ngoc H; Tran Anh V; Hoang Quang H
    J Med Eng Technol; 2022 May; 46(4):270-279. PubMed ID: 35212591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvise approach for respiratory pathologies classification with multilayer convolutional neural networks.
    Borwankar S; Verma JP; Jain R; Nayyar A
    Multimed Tools Appl; 2022; 81(27):39185-39205. PubMed ID: 35505670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COVID-19 disease diagnosis with light-weight CNN using modified MFCC and enhanced GFCC from human respiratory sounds.
    Kranthi Kumar L; Alphonse PJA
    Eur Phys J Spec Top; 2022; 231(18-20):3329-3346. PubMed ID: 35096278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter.
    Hadjileontiadis LJ; Panas SM
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1269-81. PubMed ID: 9401227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds.
    Alqudah AM; Qazan S; Obeidat YM
    Soft comput; 2022; 26(24):13405-13429. PubMed ID: 36186666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNN-MoE Based Framework for Classification of Respiratory Anomalies and Lung Disease Detection.
    Pham L; Phan H; Palaniappan R; Mertins A; McLoughlin I
    IEEE J Biomed Health Inform; 2021 Aug; 25(8):2938-2947. PubMed ID: 33684048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart and Lung Sound Measurement Using an Esophageal Stethoscope with Adaptive Noise Cancellation.
    Mohamed N; Kim HS; Kang KM; Mohamed M; Kim SH; Kim JG
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of adventitious lung sounds originating from pulmonary tuberculosis.
    Becker KW; Scheffer C; Blanckenberg MM; Diacon AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4334-7. PubMed ID: 24110692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.