These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34870038)
1. Exploration on Aqueous Lubrication of Polymeric Microgels between Titanium Alloy Contacts. Feng Y; Chen Z; Zhao N; Liu G; Zhou F; Liu W ACS Omega; 2021 Nov; 6(47):32178-32185. PubMed ID: 34870038 [TBL] [Abstract][Full Text] [Related]
2. Tuning the tribological property with thermal sensitive microgels for aqueous lubrication. Liu G; Wang X; Zhou F; Liu W ACS Appl Mater Interfaces; 2013 Nov; 5(21):10842-52. PubMed ID: 24117133 [TBL] [Abstract][Full Text] [Related]
3. Emulsion Microgel Particles as High-Performance Bio-Lubricants. Torres O; Andablo-Reyes E; Murray BS; Sarkar A ACS Appl Mater Interfaces; 2018 Aug; 10(32):26893-26905. PubMed ID: 30036468 [TBL] [Abstract][Full Text] [Related]
4. Dual-functional MOFs-based hybrid microgel advances aqueous lubrication and anti-inflammation. Wu W; Liu J; Lin X; He Z; Zhang H; Ji L; Gong P; Zhou F; Liu W J Colloid Interface Sci; 2023 Aug; 644():200-210. PubMed ID: 37116318 [TBL] [Abstract][Full Text] [Related]
5. Construction of Core-Shell NanoMOFs@microgel for Aqueous Lubrication and Thermal-Responsive Drug Release. Wu W; Liu J; Gong P; Li Z; Ke C; Qian Y; Luo H; Xiao L; Zhou F; Liu W Small; 2022 Jul; 18(28):e2202510. PubMed ID: 35710878 [TBL] [Abstract][Full Text] [Related]
6. Near-Infrared-Light-Modulated Lubricating Coating Enabled by Photothermal Microgels. Chen Z; Feng Y; Zhao N; Liu Y; Liu G; Zhou F; Liu W ACS Appl Mater Interfaces; 2021 Oct; 13(41):49322-49330. PubMed ID: 34619955 [TBL] [Abstract][Full Text] [Related]
7. Size-Controllable and pH-Sensitive Whey Protein Microgels as High-Performance Aqueous Biolubricants. Chu Y; Zhao Z; Schreiber S; Zeng H; Chen L ACS Appl Mater Interfaces; 2024 Sep; 16(35):46909-46922. PubMed ID: 39172030 [TBL] [Abstract][Full Text] [Related]
8. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. Liu G; Liu Z; Li N; Wang X; Zhou F; Liu W ACS Appl Mater Interfaces; 2014 Nov; 6(22):20452-63. PubMed ID: 25347384 [TBL] [Abstract][Full Text] [Related]
9. Chemical- and Mechanical-Induced Lubrication Mechanisms during Hot Rolling of Titanium Alloys Using a Mixed Graphene-Incorporating Lubricant. Kong N; Zhang J; Zhang J; Li H; Wei B; Li D; Zhu H Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32252369 [TBL] [Abstract][Full Text] [Related]
10. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles. Sarkar A; Kanti F; Gulotta A; Murray BS; Zhang S Langmuir; 2017 Dec; 33(51):14699-14708. PubMed ID: 29193975 [TBL] [Abstract][Full Text] [Related]
11. Soft/Hard-Coupled Amphiphilic Polymer Nanospheres for Water Lubrication. Li Z; Ma S; Zhang G; Wang D; Zhou F ACS Appl Mater Interfaces; 2018 Mar; 10(10):9178-9187. PubMed ID: 29468880 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of poly(N-isopropylmethacrylamide-acrylic acid) smart polymer microgels for adsorptive extraction of copper(II) and cobalt(II) from aqueous medium: kinetic and thermodynamic aspects. Naseem K; Farooqi ZH; Begum R; Ur Rehman MZ; Ghufran M; Wu W; Najeeb J; Irfan A Environ Sci Pollut Res Int; 2020 Aug; 27(22):28169-28182. PubMed ID: 32415448 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of Confined Microgel Liquids: Weakened Spatial Confinement Effect by Microgel Particle Compliance. Seekell RP; Lin K; Zhu Y Langmuir; 2021 May; 37(17):5299-5305. PubMed ID: 33886325 [TBL] [Abstract][Full Text] [Related]
14. Effects of different factors on the friction and wear mechanical properties of titanium alloy materials with cortical bones at near service conditions. Sun X; Zhou J; Xu K; Wu W; Xu L; Jiang R; Fang L PLoS One; 2023; 18(10):e0290346. PubMed ID: 37856508 [TBL] [Abstract][Full Text] [Related]
15. Interfacial layers of stimuli-responsive poly-(N-isopropylacrylamide-co-methacrylicacid) (PNIPAM-co-MAA) microgels characterized by interfacial rheology and compression isotherms. Brugger B; Vermant J; Richtering W Phys Chem Chem Phys; 2010 Nov; 12(43):14573-8. PubMed ID: 20941404 [TBL] [Abstract][Full Text] [Related]
16. Transforming sustainable plant proteins into high performance lubricating microgels. Kew B; Holmes M; Liamas E; Ettelaie R; Connell SD; Dini D; Sarkar A Nat Commun; 2023 Aug; 14(1):4743. PubMed ID: 37550321 [TBL] [Abstract][Full Text] [Related]
17. Comparing the Relative Interfacial Affinity of Soft Colloids With Different Crosslinking Densities in Pickering Emulsions. Kwok MH; Ngai T Front Chem; 2018; 6():148. PubMed ID: 29765939 [TBL] [Abstract][Full Text] [Related]
18. The development of a novel smart material based on colloidal microgels and cotton. Majcen N; Mohsen R; Snowden MJ; Mitchell JC; Voncina B Adv Colloid Interface Sci; 2018 Jun; 256():193-202. PubMed ID: 29735162 [TBL] [Abstract][Full Text] [Related]
19. Dynamic and viscoelastic interfacial behavior of β-lactoglobulin microgels of varying sizes at fluid interfaces. Murphy RW; Farkas BE; Jones OG J Colloid Interface Sci; 2016 Mar; 466():12-9. PubMed ID: 26701187 [TBL] [Abstract][Full Text] [Related]
20. Polyelectrolyte-Functionalized NanoMOFs for Highly Efficient Aqueous Lubrication and Sustained Drug Release. Wu W; Liu J; Tian L; Lin X; Xue H; Gong P; Zhou F; Liu W Macromol Rapid Commun; 2023 Jul; 44(13):e2300089. PubMed ID: 36960540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]