These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34870304)
21. Semiconductor Thermal and Electrical Properties Decoupled by Localized Phonon Resonances. Spann BT; Weber JC; Brubaker MD; Harvey TE; Yang L; Honarvar H; Tsai CN; Treglia AC; Lee M; Hussein MI; Bertness KA Adv Mater; 2023 Jun; 35(26):e2209779. PubMed ID: 36951229 [TBL] [Abstract][Full Text] [Related]
22. Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations. Jia T; Feng Z; Guo S; Zhang X; Zhang Y ACS Appl Mater Interfaces; 2020 Mar; 12(10):11852-11864. PubMed ID: 32069390 [TBL] [Abstract][Full Text] [Related]
23. Weighted Mobility Ratio Engineering for High-Performance Bi-Te-Based Thermoelectric Materials via Suppression of Minority Carrier Transport. Kim M; Kim SI; Kim SW; Kim HS; Lee KH Adv Mater; 2021 Nov; 33(47):e2005931. PubMed ID: 33759235 [TBL] [Abstract][Full Text] [Related]
24. Effect of electron-phonon coupling on the transport properties of monolayers of ZrS Sharma G; Pandey VK; Datta S; Ghosh P Phys Chem Chem Phys; 2021 May; 23(20):11663-11671. PubMed ID: 33978013 [TBL] [Abstract][Full Text] [Related]
25. Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te. Ouyang T; Zhang X; Hu M Nanotechnology; 2015 Jan; 26(2):025702. PubMed ID: 25525816 [TBL] [Abstract][Full Text] [Related]
26. Synergistically Optimized Electron and Phonon Transport of Polycrystalline BiCuSeO Yin Z; Liu Z; Yu Y; Zhang C; Chen P; Zhao J; He P; Guo X ACS Appl Mater Interfaces; 2021 Dec; 13(48):57638-57645. PubMed ID: 34817977 [TBL] [Abstract][Full Text] [Related]
27. Titanium Trisulfide Monolayer as a Potential Thermoelectric Material: A First-Principles-Based Boltzmann Transport Study. Zhang J; Liu X; Wen Y; Shi L; Chen R; Liu H; Shan B ACS Appl Mater Interfaces; 2017 Jan; 9(3):2509-2515. PubMed ID: 28054481 [TBL] [Abstract][Full Text] [Related]
28. Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance. Zhou B; Sun C; Wang X; Bu Z; Li W; Ang R; Pei Y ACS Appl Mater Interfaces; 2019 Jul; 11(30):27098-27103. PubMed ID: 31283881 [TBL] [Abstract][Full Text] [Related]
29. Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te. Ma J; Meng F; He J; Jia Y; Li W ACS Appl Mater Interfaces; 2020 Sep; 12(39):43901-43910. PubMed ID: 32870654 [TBL] [Abstract][Full Text] [Related]
30. The Electronic Transport Channel Protection and Tuning in Real Space to Boost the Thermoelectric Performance of Mg Han Z; Gui Z; Zhu YB; Qin P; Zhang BP; Zhang W; Huang L; Liu W Research (Wash D C); 2020; 2020():1672051. PubMed ID: 32190833 [TBL] [Abstract][Full Text] [Related]
31. First principles study of electronic structure and thermoelectric transport in tin selenide and phase separated tin selenide-copper selenide alloy. Das A; Kumar A; Banerji P J Phys Condens Matter; 2020 Jun; 32(26):265501. PubMed ID: 32106100 [TBL] [Abstract][Full Text] [Related]
32. Thermoelectric Properties of InA Nanowires from Full-Band Atomistic Simulations. Archetti D; Neophytou N Molecules; 2020 Nov; 25(22):. PubMed ID: 33207779 [TBL] [Abstract][Full Text] [Related]
33. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
34. First-principles investigations on a two-dimensional S Li J; Wang YP; Zhang S; Duan H; Long M J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315134 [TBL] [Abstract][Full Text] [Related]
35. The thermoelectric properties of α-XP (X = Sb and Bi) monolayers from first-principles calculations. Liu X; Zhang D; Chen Y; Wang H; Wang H; Ni Y Phys Chem Chem Phys; 2021 Nov; 23(43):24598-24606. PubMed ID: 34723296 [TBL] [Abstract][Full Text] [Related]
36. Gigantic Phonon-Scattering Cross Section To Enhance Thermoelectric Performance in Bulk Crystals. Hwang J; Kim H; Han MK; Hong J; Shim JH; Tak JY; Lim YS; Jin Y; Kim J; Park H; Lee DK; Bahk JH; Kim SJ; Kim W ACS Nano; 2019 Jul; 13(7):8347-8355. PubMed ID: 31260259 [TBL] [Abstract][Full Text] [Related]
37. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface. Ishibe T; Tomeda A; Watanabe K; Kamakura Y; Mori N; Naruse N; Mera Y; Yamashita Y; Nakamura Y ACS Appl Mater Interfaces; 2018 Oct; 10(43):37709-37716. PubMed ID: 30346133 [TBL] [Abstract][Full Text] [Related]
38. High-Throughput Screening for Advanced Thermoelectric Materials: Diamond-Like ABX Li R; Li X; Xi L; Yang J; Singh DJ; Zhang W ACS Appl Mater Interfaces; 2019 Jul; 11(28):24859-24866. PubMed ID: 31025850 [TBL] [Abstract][Full Text] [Related]
39. Band engineering of thermoelectric materials. Pei Y; Wang H; Snyder GJ Adv Mater; 2012 Dec; 24(46):6125-35. PubMed ID: 23074043 [TBL] [Abstract][Full Text] [Related]
40. Long-range ordering and local structural disordering of BiAgSe Huang W; Zhu Y; Liu Y; Tao S; Yang C; Diao Q; Hong Z; Han H; Liu L; Xu W Phys Chem Chem Phys; 2021 Nov; 23(42):24328-24335. PubMed ID: 34673863 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]