BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34870332)

  • 1. Benchmark study on deep neural network potentials for small organic molecules.
    Modee R; Laghuvarapu S; Priyakumar UD
    J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
    Unke OT; Meuwly M
    J Chem Theory Comput; 2019 Jun; 15(6):3678-3693. PubMed ID: 31042390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments.
    Lahey SJ; Thien Phuc TN; Rowley CN
    J Chem Inf Model; 2020 Dec; 60(12):6258-6268. PubMed ID: 33263401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies.
    Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M
    J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules.
    Vassilev-Galindo V; Fonseca G; Poltavsky I; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(9):094119. PubMed ID: 33685131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.
    Smith JS; Isayev O; Roitberg AE
    Chem Sci; 2017 Apr; 8(4):3192-3203. PubMed ID: 28507695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MolE8: finding DFT potential energy surface minima values from force-field optimised organic molecules with new machine learning representations.
    Lee S; Ermanis K; Goodman JM
    Chem Sci; 2022 Jun; 13(24):7204-7214. PubMed ID: 35799803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-Geometry Dependency of Molecular Structures: A Multistep Machine Learning Approach.
    Moharreri E; Pardakhti M; Srivastava R; Suib SL
    ACS Comb Sci; 2019 Sep; 21(9):614-621. PubMed ID: 31390176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.
    Devereux C; Smith JS; Huddleston KK; Barros K; Zubatyuk R; Isayev O; Roitberg AE
    J Chem Theory Comput; 2020 Jul; 16(7):4192-4202. PubMed ID: 32543858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy.
    Kamath A; Vargas-Hernández RA; Krems RV; Carrington T; Manzhos S
    J Chem Phys; 2018 Jun; 148(24):241702. PubMed ID: 29960346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SchNet - A deep learning architecture for molecules and materials.
    Schütt KT; Sauceda HE; Kindermans PJ; Tkatchenko A; Müller KR
    J Chem Phys; 2018 Jun; 148(24):241722. PubMed ID: 29960322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Less is more: Sampling chemical space with active learning.
    Smith JS; Nebgen B; Lubbers N; Isayev O; Roitberg AE
    J Chem Phys; 2018 Jun; 148(24):241733. PubMed ID: 29960353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ESCAPE: A novel approach for a fast estimation of dynamic correlation energies: Application to large organic molecules.
    Warczinski L; Franke R; Staemmler V
    J Comput Chem; 2019 Oct; 40(28):2491-2501. PubMed ID: 31343760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the enthalpy of formation of energetic molecules
    Zhang D; Chu Q; Chen D
    Phys Chem Chem Phys; 2024 Feb; 26(8):7029-7041. PubMed ID: 38345363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network atomistic potentials for global energy minima search in carbon clusters.
    Tkachenko NV; Tkachenko AA; Nebgen B; Tretiak S; Boldyrev AI
    Phys Chem Chem Phys; 2023 Aug; 25(32):21173-21182. PubMed ID: 37490276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.