BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34870408)

  • 1. Targeting the Extracellular Matrix in Traumatic Brain Injury Increases Signal Generation from an Activity-Based Nanosensor.
    Kandell RM; Kudryashev JA; Kwon EJ
    ACS Nano; 2021 Dec; 15(12):20504-20516. PubMed ID: 34870408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Activity-Based Nanosensor for Traumatic Brain Injury.
    Kudryashev JA; Waggoner LE; Leng HT; Mininni NH; Kwon EJ
    ACS Sens; 2020 Mar; 5(3):686-692. PubMed ID: 32100994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Activity-Based Nanosensor for Minimally-Invasive Measurement of Protease Activity in Traumatic Brain Injury.
    Kudryashev JA; Madias MI; Kandell RM; Lin QX; Kwon EJ
    Adv Funct Mater; 2023 Jul; 33(28):. PubMed ID: 37873031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats.
    Pike BR; Flint J; Dutta S; Johnson E; Wang KK; Hayes RL
    J Neurochem; 2001 Sep; 78(6):1297-306. PubMed ID: 11579138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Calpain and Caspase-6-Generated Glial Fibrillary Acidic Protein Breakdown Products Following Traumatic Brain Injury and Astroglial Cell Injury.
    Yang Z; Arja RD; Zhu T; Sarkis GA; Patterson RL; Romo P; Rathore DS; Moghieb A; Abbatiello S; Robertson CS; Haskins WE; Kobeissy F; Wang KKW
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual vulnerability of tau to calpains and caspase-3 proteolysis under neurotoxic and neurodegenerative conditions.
    Liu MC; Kobeissy F; Zheng W; Zhang Z; Hayes RL; Wang KK
    ASN Neuro; 2011 Feb; 3(1):e00051. PubMed ID: 21359008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury.
    Yousuf MA; Tan C; Torres-Altoro MI; Lu FM; Plautz E; Zhang S; Takahashi M; Hernandez A; Kernie SG; Plattner F; Bibb JA
    J Neurochem; 2016 Jul; 138(2):317-27. PubMed ID: 26998748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice.
    Thompson SN; Gibson TR; Thompson BM; Deng Y; Hall ED
    Exp Neurol; 2006 Sep; 201(1):253-65. PubMed ID: 16814284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging and serum biomarkers reflecting the functional efficacy of extended erythropoietin treatment in rats following infantile traumatic brain injury.
    Robinson S; Winer JL; Berkner J; Chan LA; Denson JL; Maxwell JR; Yang Y; Sillerud LO; Tasker RC; Meehan WP; Mannix R; Jantzie LL
    J Neurosurg Pediatr; 2016 Jun; 17(6):739-55. PubMed ID: 26894518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calpain expression in the brain cortex after traumatic brain injury.
    Bralić M; Stemberga V
    Coll Antropol; 2012 Dec; 36(4):1319-23. PubMed ID: 23390828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury.
    Wu Y; Wang J; Shi Y; Pu H; Leak RK; Liou AKF; Badylak SF; Liu Z; Zhang J; Chen J; Chen L
    Cell Transplant; 2017 Jul; 26(7):1224-1234. PubMed ID: 28933217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury.
    Zhang Z; Ottens AK; Sadasivan S; Kobeissy FH; Fang T; Hayes RL; Wang KK
    J Neurotrauma; 2007 Mar; 24(3):460-72. PubMed ID: 17402852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Silicon Nanoparticles Targeted to the Extracellular Matrix for Therapeutic Protein Delivery in Traumatic Brain Injury.
    Waggoner LE; Kang J; Zuidema JM; Vijayakumar S; Hurtado AA; Sailor MJ; Kwon EJ
    Bioconjug Chem; 2022 Sep; 33(9):1685-1697. PubMed ID: 36017941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection against TBI-Induced Neuronal Death with Post-Treatment with a Selective Calpain-2 Inhibitor in Mice.
    Wang Y; Liu Y; Lopez D; Lee M; Dayal S; Hurtado A; Bi X; Baudry M
    J Neurotrauma; 2018 Jan; 35(1):105-117. PubMed ID: 28594313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calpain inhibitor MDL28170 improves the transplantation-mediated therapeutic effect of bone marrow-derived mesenchymal stem cells following traumatic brain injury.
    Hu J; Chen L; Huang X; Wu K; Ding S; Wang W; Wang B; Smith C; Ren C; Ni H; ZhuGe Q; Yang J
    Stem Cell Res Ther; 2019 Mar; 10(1):96. PubMed ID: 30876457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats.
    Huh JW; Franklin MA; Widing AG; Raghupathi R
    Dev Neurosci; 2006; 28(4-5):466-76. PubMed ID: 16943669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propofol ameliorates calpain-induced collapsin response mediator protein-2 proteolysis in traumatic brain injury in rats.
    Yu Y; Jian MY; Wang YZ; Han RQ
    Chin Med J (Engl); 2015 Apr; 128(7):919-27. PubMed ID: 25836613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of injury severity on regional and temporal mRNA expression levels of calpains and caspases after traumatic brain injury in rats.
    Ringger NC; Tolentino PJ; McKinsey DM; Pike BR; Wang KK; Hayes RL
    J Neurotrauma; 2004 Jul; 21(7):829-41. PubMed ID: 15307896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PrP
    Rubenstein R; Wang KK; Chiu A; Grinkina N; Sharma DR; Agarwal S; Lin F; Yang Z
    Behav Brain Res; 2018 Mar; 340():29-40. PubMed ID: 27188531
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.