These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34870427)

  • 41. An integrated biosensor platform for extraction and detection of nucleic acids.
    Sciuto EL; Petralia S; Calabrese G; Conoci S
    Biotechnol Bioeng; 2020 May; 117(5):1554-1561. PubMed ID: 31997343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.
    Kim TH; Park J; Kim CJ; Cho YK
    Anal Chem; 2014 Apr; 86(8):3841-8. PubMed ID: 24635032
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Paper-based microfluidics for rapid diagnostics and drug delivery.
    Mao K; Min X; Zhang H; Zhang K; Cao H; Guo Y; Yang Z
    J Control Release; 2020 Jun; 322():187-199. PubMed ID: 32169536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lab-on-a-Chip Zika Detection With Reverse Transcription Loop-Mediated Isothermal Amplification-Based Assay for Point-of-Care Settings.
    Sharma S; Kabir MA; Asghar W
    Arch Pathol Lab Med; 2020 Nov; 144(11):1335-1343. PubMed ID: 32886758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction.
    Deraney RN; Schneider L; Tripathi A
    Analyst; 2020 Mar; 145(6):2412-2419. PubMed ID: 32057055
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic-RT-LAMP chip for the point-of-care detection of emerging and re-emerging enteric coronaviruses in swine.
    Zhou L; Chen Y; Fang X; Liu Y; Du M; Lu X; Li Q; Sun Y; Ma J; Lan T
    Anal Chim Acta; 2020 Aug; 1125():57-65. PubMed ID: 32674781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.
    Chan K; Coen M; Hardick J; Gaydos CA; Wong KY; Smith C; Wilson SA; Vayugundla SP; Wong S
    PLoS One; 2016; 11(6):e0158502. PubMed ID: 27362424
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care.
    Barbosa AI; Reis NM
    Analyst; 2017 Mar; 142(6):858-882. PubMed ID: 28217778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid and simple single-chamber nucleic acid detection system prepared through nature-inspired surface engineering.
    Park J; Woo S; Kim J; Lee H; Yoo YE; Hong S
    Theranostics; 2021; 11(14):6735-6745. PubMed ID: 34093850
    [No Abstract]   [Full Text] [Related]  

  • 50. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics.
    Kadimisetty K; Song J; Doto AM; Hwang Y; Peng J; Mauk MG; Bushman FD; Gross R; Jarvis JN; Liu C
    Biosens Bioelectron; 2018 Jun; 109():156-163. PubMed ID: 29550739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic and transducer technologies for lab on a chip applications.
    Hill D; Sandstrom N; Gylfason K; Carlborg F; Karlsson M; Haraldsson T; Sohlstrom H; Russom A; Stemme G; Claes T; Bienstman P; Kazmierczak A; Dortu F; Banuls Polo MJ; Maquieira A; Kresbach GM; Vivien L; Popplewell J; Ronan G; Barrios CA; van der Wijngaart W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():305-7. PubMed ID: 21096759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection.
    Wang Y; Wang C; Zhou Z; Si J; Li S; Zeng Y; Deng Y; Chen Z
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.
    Selck DA; Ismagilov RF
    PLoS One; 2016; 11(10):e0163060. PubMed ID: 27760148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives.
    Hongzhou C; Shuping G; Wenju W; Li L; Lulu W; Linjun D; Jingmin L; Xiaoli R; Li B
    J Dermatol Sci; 2017 Feb; 85(2):71-76. PubMed ID: 27756517
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes.
    Sage AT; Besant JD; Lam B; Sargent EH; Kelley SO
    Acc Chem Res; 2014 Aug; 47(8):2417-25. PubMed ID: 24961296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sample preparation and detection methods in point-of-care devices towards future at-home testing.
    Adedokun G; Alipanah M; Fan ZH
    Lab Chip; 2024 Jul; 24(15):3626-3650. PubMed ID: 38952234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics.
    Choi JR; Tang R; Wang S; Wan Abas WA; Pingguan-Murphy B; Xu F
    Biosens Bioelectron; 2015 Dec; 74():427-39. PubMed ID: 26164488
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Miniaturization of molecular biological techniques for gene assay.
    Lien KY; Lee GB
    Analyst; 2010 Jul; 135(7):1499-518. PubMed ID: 20390199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review.
    Xia Y; Si J; Li Z
    Biosens Bioelectron; 2016 Mar; 77():774-89. PubMed ID: 26513284
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Paper-based nucleic acid amplification tests for point-of-care diagnostics.
    Kaur N; Toley BJ
    Analyst; 2018 May; 143(10):2213-2234. PubMed ID: 29683153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.