These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3487054)

  • 1. Voltage-sensitive dyes measure potential changes in axons and glia of the frog optic nerve.
    Konnerth A; Orkand RK
    Neurosci Lett; 1986 May; 66(1):49-54. PubMed ID: 3487054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical recording of electrical activity from axons and glia of frog optic nerve: potentiometric dye responses and morphometrics.
    Konnerth A; Orkand PM; Orkand RK
    Glia; 1988; 1(3):225-32. PubMed ID: 2852172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The optic nerve: a model for axon-glial interactions.
    Bolton S; Butt AM
    J Pharmacol Toxicol Methods; 2005; 51(3):221-33. PubMed ID: 15862467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitation of voltage-gated ion channels in frog neuroglia by nerve impulses.
    Marrero H; Astion ML; Coles JA; Orkand RK
    Nature; 1989 Jun; 339(6223):378-80. PubMed ID: 2471079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical recording of membrane potential responses from early embryonic chick ganglia using voltage-sensitive dyes.
    Sakai T; Hirota A; Komuro H; Fujii S; Kamino K
    Brain Res; 1985 Jan; 349(1-2):39-51. PubMed ID: 3872700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific effects on the optical signals of voltage-sensitive dyes.
    Ross WN; Reichardt LF
    J Membr Biol; 1979 Aug; 48(4):343-56. PubMed ID: 490629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circus-movement tachycardia in frog atrium monitored by voltage-sensitive dyes.
    Sawanobori T; Hirano Y; Hirota A; Fujii S
    Am J Physiol; 1984 Aug; 247(2 Pt 2):H185-94. PubMed ID: 6331771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelength dependence of optical action potentials in the isolated rat atrium.
    Sakai T
    Jpn J Physiol; 2005 Dec; 55(6):389-93. PubMed ID: 16285889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-potential-sensitive dyes for optical monitoring of activity in Aplysia neurons.
    Woolum JC; Strumwasser F
    J Neurobiol; 1978 May; 9(3):185-193. PubMed ID: 690634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure and voltage-dependent sodium currents at the glia limitans of the frog optic nerve before and after the axons degenerate.
    Orkand PM; Blanco R; Marrero H; Orkand RK
    Ann N Y Acad Sci; 1991; 633():586-8. PubMed ID: 1789586
    [No Abstract]   [Full Text] [Related]  

  • 12. A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve.
    Black JA; Waxman SG; Ransom BR; Feliciano MD
    Brain Res; 1986 Aug; 380(1):122-35. PubMed ID: 2428420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic cellular response to transection in the newt optic nerve: glial reactivity precedes axonal degeneration.
    Phillips LL; Turner JE
    J Neurocytol; 1991 Jan; 20(1):51-64. PubMed ID: 2027036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical recording of conducted action potential in heart muscle using a voltage-sensitive dye.
    Sawanobori T; Hirota A; Fujii S; Kamino K
    Jpn J Physiol; 1981; 31(3):369-80. PubMed ID: 6975385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential.
    Barrett EF; Barrett JN
    J Physiol; 1982 Feb; 323():117-44. PubMed ID: 6980272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural studies of dorsal root axons regenerating through adult frog optic and sciatic nerves.
    Blanco RE; Rosado J; Padilla J; Del Cueto C
    Microsc Res Tech; 1999 Aug 15-Sep 1; 46(4-5):310-8. PubMed ID: 10469467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in ultrastructure and voltage-dependent currents at the glia limitans of the frog optic nerve following retinal ablation.
    Blanco RE; Marrero H; Orkand PM; Orkand RK
    Glia; 1993 Jun; 8(2):97-105. PubMed ID: 8406678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical measurements of potential changes in axons and processes of neurons of a barnacle ganglion.
    Ross WN; Krauthamer V
    J Neurosci; 1984 Mar; 4(3):659-72. PubMed ID: 6707730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical signals from early embryonic chick heart stained with potential sensitive dyes: evidence for electrical activity.
    Fujii S; Hirota A; Kamino K
    J Physiol; 1980 Jul; 304():503-18. PubMed ID: 6160238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.