These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3487054)

  • 41. Dendrotoxin blocks accommodation in frog myelinated axons.
    Poulter MO; Hashiguchi T; Padjen AL
    J Neurophysiol; 1989 Jul; 62(1):174-84. PubMed ID: 2787843
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Axonal interactions with connective tissue and glial substrata during optic nerve regeneration in Xenopus larvae and adults.
    Bohn RC; Reier PJ; Sourbeer EB
    Am J Anat; 1982 Dec; 165(4):397-419. PubMed ID: 7158611
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wavelength dependence of the optically recorded action potentials in guinea pig atrial muscles.
    Fujishiro N; Kern RE; Kawata H
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Feb; 122(2):235-40. PubMed ID: 10327619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuron-independent Ca(2+) signaling in glial cells of snail's brain.
    Kojima S; Ogawa H; Kouuchi T; Nidaira T; Hosono T; Ito E
    Neuroscience; 2000; 100(4):893-900. PubMed ID: 11036223
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of barium and bicarbonate on glial cells of Necturus optic nerve. Studies with microelectrodes and voltage-sensitive dyes.
    Astion ML; Obaid AL; Orkand RK
    J Gen Physiol; 1989 Apr; 93(4):731-44. PubMed ID: 2732681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve.
    Ransom BR; Orkand RK
    Trends Neurosci; 1996 Aug; 19(8):352-8. PubMed ID: 8843605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microsecond response of a voltage-sensitive merocyanine dye: fast voltage-clamp measurements on squid giant axon.
    Salzberg BM; Obaid AL; Bezanilla F
    Jpn J Physiol; 1993; 43 Suppl 1():S37-41. PubMed ID: 8271515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional properties of regenerated optic axons terminating in the primary olfactory cortex.
    Scalia F; Grant AC; Reyes M; Lettvin JY
    Brain Res; 1995 Jul; 685(1-2):187-97. PubMed ID: 7583245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Axon dependent glial changes during optic fiber regeneration in the goldfish.
    Levine RL
    J Comp Neurol; 1993 Jul; 333(4):543-53. PubMed ID: 8370816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical probes of membrane potential in heart muscle.
    Morad M; Salama G
    J Physiol; 1979 Jul; 292():267-95. PubMed ID: 314976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voltage-gated currents recorded from the surface of the frog optic nerve.
    Ortiz S; Rodriguez O; Orkand PM; Orkand RK; Marrero H
    P R Health Sci J; 1988 Aug; 7(2):141-3. PubMed ID: 2460888
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of voltage-sensitive dyes for long-term recording of neural activity in the hippocampus.
    Momose-Sato Y; Sato K; Arai Y; Yazawa I; Mochida H; Kamino K
    J Membr Biol; 1999 Nov; 172(2):145-57. PubMed ID: 10556362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ratiometric measurement of endothelial depolarization in arterioles with a potential-sensitive dye.
    Beach JM; McGahren ED; Xia J; Duling BR
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2216-27. PubMed ID: 8764277
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functions of optic nerve glia: axoglial signalling in physiology and pathology.
    Butt AM; Pugh M; Hubbard P; James G
    Eye (Lond); 2004 Nov; 18(11):1110-21. PubMed ID: 15534596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping membrane potential transients in crayfish (Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes.
    Yagodin S; Collin C; Alkon DL; Sheppard NF; Sattelle DB
    J Neurophysiol; 1999 Jan; 81(1):334-44. PubMed ID: 9914293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurotransmitter-mediated signaling between axons and glial cells.
    Chiu SY; Kriegler S
    Glia; 1994 Jun; 11(2):191-200. PubMed ID: 7927647
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nerve impulses facilitate voltage-sensitive ion channels in surface astrocytes of frog optic nerve.
    Orkand RK; Marrero H
    Acta Physiol Scand Suppl; 1989; 582():43. PubMed ID: 2816438
    [No Abstract]   [Full Text] [Related]  

  • 58. Cellular localisation of metabotropic glutamate receptors in the mammalian optic nerve: a mechanism for axon-glia communication.
    Jeffery G; Sharp C; Malitschek B; Salt TE; Kuhn R; Knöpfel T
    Brain Res; 1996 Nov; 741(1-2):75-81. PubMed ID: 9001707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling of microstructural kinematics during simple elongation of central nervous system tissue.
    Bain AC; Shreiber DI; Meaney DF
    J Biomech Eng; 2003 Dec; 125(6):798-804. PubMed ID: 14986404
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Processes and components participating in the generation of intrinsic optical signal changes in vitro.
    Buchheim K; Wessel O; Siegmund H; Schuchmann S; Meierkord H
    Eur J Neurosci; 2005 Jul; 22(1):125-32. PubMed ID: 16029202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.