These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 3487054)

  • 61. Effect of cutting the optic nerve on K+ currents in endfeet of Muller cells isolated from frog retina.
    Skatchkov SN; Vyklicky L; Clasen T; Orkand RK
    Neurosci Lett; 1996 Apr; 208(2):81-4. PubMed ID: 8859895
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye.
    Kamino K; Hirota A; Fujii S
    Nature; 1981 Apr; 290(5807):595-7. PubMed ID: 7219544
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Excitation and detection of action potential-induced fluorescence changes through a single monomode optical fiber.
    Bowmaster TA; Davis CC; Krauthamer V
    Biochim Biophys Acta; 1991 Jan; 1091(1):9-14. PubMed ID: 1995070
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE; Scalia F
    J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input.
    Kim YI; Dudek FE
    J Physiol; 1993 May; 464():229-43. PubMed ID: 8229799
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel neurotransmitter-independent communication pathway between axons and glial cells.
    Hartl S; Heil JE; Hirsekorn A; Lohr C
    Eur J Neurosci; 2007 Feb; 25(4):945-56. PubMed ID: 17331192
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regeneration in the rat optic nerve after cold injury.
    Murakami M; Ide C; Kanaya H
    J Neurosurg; 1989 Aug; 71(2):254-65. PubMed ID: 2746349
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fish optic nerve oligodendrocytes support axonal regeneration of fish and mammalian retinal ganglion cells.
    Bastmeyer M; Bähr M; Stuermer CA
    Glia; 1993 May; 8(1):1-11. PubMed ID: 8509160
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Repetitive spikes in photoreceptor axons of the scorpion eye. Invertebrate eye structure and tetrodotoxin.
    Belmonte C; Stensaas LJ
    J Gen Physiol; 1975 Nov; 66(5):649-55. PubMed ID: 1194888
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures.
    Baranyi A; Szente MB; Woody CD
    J Neurophysiol; 1993 Jun; 69(6):1865-79. PubMed ID: 8350127
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Multiple-site optical monitoring of neural activity evoked by vagus nerve stimulation in the embryonic chick brain stem.
    Kamino K; Katoh Y; Komuro H; Sato K
    J Physiol; 1989 Feb; 409():263-83. PubMed ID: 2585291
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evoked depolarizing and hyperpolarizing potentials in reticulospinal axons of lamprey.
    Matthews G; Wickelgren WO
    J Physiol; 1978 Jun; 279():551-67. PubMed ID: 671362
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [The effect of central and peripheral neuroglia on the regeneration of the optic nerve].
    Thanos S; Vanselow J
    Fortschr Ophthalmol; 1989; 86(2):172-5. PubMed ID: 2786831
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Role of K+ in GABA (gamma-aminobutyric acid)-evoked depolarization of peripheral nerve.
    Morris ME; Di Costanzo GA; Barolet A; Sheridan PJ
    Brain Res; 1983 Nov; 278(1-2):127-35. PubMed ID: 6605784
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optical illustration of glutamate-induced cell swelling coupled with membrane depolarization in embryonic brain stem slices.
    Sato K; Momose-Sato Y; Arai Y; Hirota A; Kamino K
    Neuroreport; 1997 Nov; 8(16):3559-63. PubMed ID: 9427326
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Evaluation of optimal voltage-sensitive dyes for optical monitoring of embryonic neural activity.
    Momose-Sato Y; Sato K; Sakai T; Hirota A; Matsutani K; Kamino K
    J Membr Biol; 1995 Mar; 144(2):167-76. PubMed ID: 7595947
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The nature of the membrane potential of glial cells associated with the medial giant axon of the crayfish.
    Lieberman EM; Villegas J; Villegas GM
    Neuroscience; 1981; 6(2):261-71. PubMed ID: 7219717
    [No Abstract]   [Full Text] [Related]  

  • 79. Optical monitoring of early appearance of spontaneous membrane potential changes in the embryonic chick medulla oblongata using a voltage-sensitive dye.
    Komuro H; Momose-Sato Y; Sakai T; Hirota A; Kamino K
    Neuroscience; 1993 Jan; 52(1):55-62. PubMed ID: 8433809
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microelectrode study of spreading depression (SD) in frog retina--general observations of field potential associated with SD.
    Mori S; Miller WH; Tomita T
    Jpn J Physiol; 1976; 26(2):203-17. PubMed ID: 1085830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.