BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34870665)

  • 1. Fabrication of sharp-edged 3D microparticles
    Zhou C; Liang S; Li Y; Chen H; Li J
    Lab Chip; 2021 Dec; 22(1):148-155. PubMed ID: 34870665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex three-dimensional microparticles from microfluidic lithography.
    Tian Y; Wang L
    Electrophoresis; 2020 Sep; 41(16-17):1491-1502. PubMed ID: 32012294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new approach to in-situ "micromanufacturing": microfluidic fabrication of magnetic and fluorescent chains using chitosan microparticles as building blocks.
    Jiang K; Xue C; Arya C; Shao C; George EO; DeVoe DL; Raghavan SR
    Small; 2011 Sep; 7(17):2470-6. PubMed ID: 21710485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection.
    Arshavsky-Graham S; Enders A; Ackerman S; Bahnemann J; Segal E
    Mikrochim Acta; 2021 Feb; 188(3):67. PubMed ID: 33543321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic control of 3D chemical profiles with a single 2D microfluidic platform.
    Kim Y; Joshi SD; Davidson LA; LeDuc PR; Messner WC
    Lab Chip; 2011 Jul; 11(13):2182-8. PubMed ID: 21528131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic dialysis using photo-patterned hydrogel membranes in PDMS chips.
    Nguyen HT; Massino M; Keita C; Salmon JB
    Lab Chip; 2020 Jun; 20(13):2383-2393. PubMed ID: 32510526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement.
    Sala F; Ficorella C; Osellame R; Käs JA; Martínez Vázquez R
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of droplet-based microfluidic techniques in the preparation of microparticles.
    Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E
    Ceska Slov Farm; 2021; 70(5):155-163. PubMed ID: 35114792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of droplet-based microfluidic techniques in the preparation of microparticles.
    Naiserová M; Vysloužil J; Kubová K; Holická M; Vetchý D; Mašek J; Mašková E
    Ceska Slov Farm; 2021; 70(5):155–163. PubMed ID: 34875837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow lithography for structured microparticles: fundamentals, methods and applications.
    Sahin MA; Werner H; Udani S; Di Carlo D; Destgeer G
    Lab Chip; 2022 Oct; 22(21):4007-4042. PubMed ID: 35920614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designable 3D Microshapes Fabricated at the Intersection of Structured Flow and Optical Fields.
    Yuan R; Nagarajan MB; Lee J; Voldman J; Doyle PS; Fink Y
    Small; 2018 Dec; 14(50):e1803585. PubMed ID: 30369043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Viscosity Polydimethylsiloxane Resin for Facile 3D Printing of Elastomeric Microfluidics.
    Fleck E; Keck C; Ryszka K; DeNatale E; Potkay J
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and applications of complex-shaped microparticles via microfluidics.
    Seo KD; Kim DS; Sánchez S
    Lab Chip; 2015; 15(18):3622-6. PubMed ID: 26272308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Typography-Like 3D-Printed Templates for the Lithography-Free Fabrication of Microfluidic Chips.
    Su W; Li Y; Zhang L; Sun J; Liu S; Ding X
    SLAS Technol; 2020 Feb; 25(1):82-87. PubMed ID: 31381466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D shape evolution of microparticles and 3D enabled applications using non-uniform UV flow lithography (NUFL).
    Choi K; Salehizadeh M; Da Silva RB; Hakimi N; Diller E; Hwang DK
    Soft Matter; 2017 Oct; 13(40):7255-7263. PubMed ID: 28960218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-Programmable Three-Dimensional Microfluidic Structures.
    Wang Z; Jiang H; Wu G; Li Y; Zhang T; Zhang Y; Wang X
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15599-15607. PubMed ID: 35319180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.