BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34870665)

  • 21. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications.
    Lee GH; Lee JS; Wang X; Lee SH
    Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization.
    Luo Z; Zhang H; Chen R; Li H; Cheng F; Zhang L; Liu J; Kong T; Zhang Y; Wang H
    Microsyst Nanoeng; 2023; 9():103. PubMed ID: 37593440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp.
    Kung YC; Huang KW; Fan YJ; Chiou PY
    Lab Chip; 2015 Apr; 15(8):1861-8. PubMed ID: 25710255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release.
    Duncanson WJ; Lin T; Abate AR; Seiffert S; Shah RK; Weitz DA
    Lab Chip; 2012 Jun; 12(12):2135-45. PubMed ID: 22510961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining.
    Zeinali S; Çetin B; Oliaei SN; Karpat Y
    Electrophoresis; 2015 Jul; 36(13):1432-42. PubMed ID: 25808433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional-printing for microfluidics or the other way around?
    Zhang Y
    Int J Bioprint; 2019; 5(2):192. PubMed ID: 32596534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sealing 3D-printed parts to poly(dimethylsiloxane) for simple fabrication of Microfluidic devices.
    Carrell CS; McCord CP; Wydallis RM; Henry CS
    Anal Chim Acta; 2020 Aug; 1124():78-84. PubMed ID: 32534678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Paper Microfluidics with 3D-Printed PDMS Barriers for Flow Control.
    Chen C; Meng H; Guo T; Deshpande S; Chen H
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40286-40296. PubMed ID: 36001301
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink.
    Zhou K; Dey M; Ayan B; Zhang Z; Ozbolat V; Kim MH; Khristov V; Ozbolat IT
    Biomed Mater; 2021 Feb; ():. PubMed ID: 33571984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional laminarin microparticles for cell adhesion and expansion.
    Martins CR; Custódio CA; Mano JF
    Carbohydr Polym; 2018 Dec; 202():91-98. PubMed ID: 30287047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photolithographic surface micromachining of polydimethylsiloxane (PDMS).
    Chen W; Lam RH; Fu J
    Lab Chip; 2012 Jan; 12(2):391-5. PubMed ID: 22089984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles.
    Sun M; Xie Y; Zhu J; Li J; Eijkel JC
    Anal Chem; 2017 Feb; 89(4):2227-2231. PubMed ID: 28192927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.