These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34870847)

  • 1. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range.
    Mu Q; Guo T; Li X; Yu J
    New Phytol; 2022 Feb; 233(4):1768-1779. PubMed ID: 34870847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis.
    Li X; Li X; Fridman E; Tesso TT; Yu J
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11823-8. PubMed ID: 26351684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and environmental determinants and their interplay underlying phenotypic plasticity.
    Li X; Guo T; Mu Q; Li X; Yu J
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6679-6684. PubMed ID: 29891664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrospective genomic analysis of sorghum adaptation to temperate-zone grain production.
    Thurber CS; Ma JM; Higgins RH; Brown PJ
    Genome Biol; 2013 Jun; 14(6):R68. PubMed ID: 23803286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population.
    Bouchet S; Olatoye MO; Marla SR; Perumal R; Tesso T; Yu J; Tuinstra M; Morris GP
    Genetics; 2017 Jun; 206(2):573-585. PubMed ID: 28592497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. np
    Ye M; Jiang L; Chen C; Zhu X; Wang M; Wu R
    Plant J; 2019 Aug; 99(4):796-806. PubMed ID: 31009134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes.
    Brown PJ; Rooney WL; Franks C; Kresovich S
    Genetics; 2008 Sep; 180(1):629-37. PubMed ID: 18757942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench.
    Shiringani AL; Frisch M; Friedt W
    Theor Appl Genet; 2010 Jul; 121(2):323-36. PubMed ID: 20229249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35.
    Rama Reddy NR; Ragimasalawada M; Sabbavarapu MM; Nadoor S; Patil JV
    BMC Genomics; 2014 Oct; 15(1):909. PubMed ID: 25326366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection.
    Upadhyaya HD; Wang YH; Gowda CL; Sharma S
    Theor Appl Genet; 2013 Aug; 126(8):2003-15. PubMed ID: 23649651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Sorghum Reconstructions from Depth Images Identify QTL Regulating Shoot Architecture.
    McCormick RF; Truong SK; Mullet JE
    Plant Physiol; 2016 Oct; 172(2):823-834. PubMed ID: 27528244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods.
    Zou G; Zhai G; Feng Q; Yan S; Wang A; Zhao Q; Shao J; Zhang Z; Zou J; Han B; Tao Y
    J Exp Bot; 2012 Sep; 63(15):5451-62. PubMed ID: 22859680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association mapping of height and maturity across five environments using the sorghum mini core collection.
    Upadhyaya HD; Wang YH; Sharma S; Singh S
    Genome; 2012 Jun; 55(6):471-9. PubMed ID: 22680231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation.
    Guo T; Mu Q; Wang J; Vanous AE; Onogi A; Iwata H; Li X; Yu J
    Genome Res; 2020 May; 30(5):673-683. PubMed ID: 32299830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum.
    Srinivas G; Satish K; Madhusudhana R; Reddy RN; Mohan SM; Seetharama N
    Theor Appl Genet; 2009 May; 118(8):1439-54. PubMed ID: 19274449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Selection for Optimum Index with Dry Biomass Yield, Dry Mass Fraction of Fresh Material, and Plant Height in Biomass Sorghum.
    Habyarimana E; Lopez-Cruz M; Baloch FS
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31948110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments.
    Knoll J; Ejeta G
    Theor Appl Genet; 2008 Feb; 116(4):541-53. PubMed ID: 18092147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Architecture of domestication- and improvement-related traits using a population derived from Sorghum virgatum and Sorghum bicolor.
    Liu H; Liu H; Zhou L; Lin Z
    Plant Sci; 2019 Jun; 283():135-146. PubMed ID: 31128683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic dissection of sorghum grain quality traits using diverse and segregating populations.
    Boyles RE; Pfeiffer BK; Cooper EA; Rauh BL; Zielinski KJ; Myers MT; Brenton Z; Rooney WL; Kresovich S
    Theor Appl Genet; 2017 Apr; 130(4):697-716. PubMed ID: 28028582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench).
    Enyew M; Feyissa T; Geleta M; Tesfaye K; Hammenhag C; Carlsson AS
    PLoS One; 2021; 16(10):e0258211. PubMed ID: 34610051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.