These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

748 related articles for article (PubMed ID: 34870973)

  • 1. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals.
    Tomat E; Curtis CJ
    Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paramagnetism and Fluorescence of Zinc(II) Tripyrrindione: A Luminescent Radical Based on a Redox-Active Biopyrrin.
    Gautam R; Petritis SJ; Astashkin AV; Tomat E
    Inorg Chem; 2018 Dec; 57(24):15240-15246. PubMed ID: 30418755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tripyrrindione as a Redox-Active Ligand: Palladium(II) Coordination in Three Redox States.
    Gautam R; Loughrey JJ; Astashkin AV; Shearer J; Tomat E
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14894-7. PubMed ID: 26448632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multicenter interactions and ligand field effects in platinum(II) tripyrrindione radicals.
    Tomat E; Curtis CJ; Astashkin AV; Conradie J; Ghosh A
    Dalton Trans; 2023 May; 52(19):6559-6568. PubMed ID: 37185585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of Metal-Based and Ligand-Based Electronic Spins in Neutral Tripyrrindione π Dimers.
    Gautam R; Astashkin AV; Chang TM; Shearer J; Tomat E
    Inorg Chem; 2017 Jun; 56(11):6755-6762. PubMed ID: 28497967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-Centered Triplet Diradical Supported by a Binuclear Palladium(II) Dipyrrindione.
    Curtis CJ; Astashkin AV; Conradie J; Ghosh A; Tomat E
    Inorg Chem; 2021 Aug; 60(16):12457-12466. PubMed ID: 34347474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold Tripyrrindione: Redox Chemistry and Reactivity with Dichloromethane.
    Curtis CJ; Habenšus I; Conradie J; Bardin AA; Nannenga BL; Ghosh A; Tomat E
    Inorg Chem; 2024 Sep; 63(37):17188-17197. PubMed ID: 39215706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphole-containing calixpyrroles, calixphyrins, and porphyrins: synthesis and coordination chemistry.
    Matano Y; Imahori H
    Acc Chem Res; 2009 Aug; 42(8):1193-204. PubMed ID: 19496532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dinickel Active Sites Supported by Redox-Active Ligands.
    Uyeda C; Farley CM
    Acc Chem Res; 2021 Oct; 54(19):3710-3719. PubMed ID: 34565142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals.
    Hollister KK; Wentz KE; Gilliard RJ
    Acc Chem Res; 2024 May; 57(10):1510-1522. PubMed ID: 38708938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.
    Jones JS; Gabbaï FP
    Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved dynamics of stable open- and closed-shell neutral radical and oxidized tripyrrindione complexes.
    Cho B; Swain A; Gautam R; Tomat E; Huxter VM
    Phys Chem Chem Phys; 2022 Jul; 24(26):15718-15725. PubMed ID: 35730195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.
    Joshi T; Graham B; Spiccia L
    Acc Chem Res; 2015 Aug; 48(8):2366-79. PubMed ID: 26244894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence.
    McNeece AJ; Jesse KA; Xie J; Filatov AS; Anderson JS
    J Am Chem Soc; 2020 Jun; 142(24):10824-10832. PubMed ID: 32429663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system.
    Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K
    J Am Chem Soc; 2008 Mar; 130(10):3181-97. PubMed ID: 18284242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides.
    Hematian S; Garcia-Bosch I; Karlin KD
    Acc Chem Res; 2015 Aug; 48(8):2462-74. PubMed ID: 26244814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.
    Karthikeyan A; Thomas Muthiah P; Perdih F
    Acta Crystallogr C Struct Chem; 2016 May; 72(Pt 5):442-50. PubMed ID: 27146575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pi-metal complexes of tetrapyrrolic systems. A novel coordination mode in "porphyrin-like" chemistry.
    Cuesta L; Sessler JL
    Chem Soc Rev; 2009 Sep; 38(9):2716-29. PubMed ID: 19690749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.