These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34870988)

  • 1. Impacts of the Electron Transport Layer Surface Reconstruction on the Buried Interface in Perovskite Optoelectronic Devices.
    Zhang S; Su J; Zhang J; Lin Z; Yuan H; Chang J; Hao Y
    J Phys Chem Lett; 2021 Dec; 12(49):11834-11842. PubMed ID: 34870988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells.
    Gong C; Zhang C; Zhuang Q; Li H; Yang H; Chen J; Zang Z
    Nanomicro Lett; 2022 Dec; 15(1):17. PubMed ID: 36580128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buried Interface Regulation by Bio-Functional Molecules for Efficient and Stable Planar Perovskite Solar Cells.
    Pang X; Huang J; Lin C; Zhang Y; Cheng N; Zi W; Sun ZZ; Yu Z; Zhao Z
    Chemistry; 2023 Mar; 29(14):e202202744. PubMed ID: 36446736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Sulfur Functionalization Anchoring SnO
    Wang Z; Kamarudin MA; Huey NC; Yang F; Pandey M; Kapil G; Ma T; Hayase S
    ChemSusChem; 2018 Nov; 11(22):3941-3948. PubMed ID: 30225914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fullerene Derivative-Modified SnO
    Cao T; Chen K; Chen Q; Zhou Y; Chen N; Li Y
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33825-33834. PubMed ID: 31436075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers.
    Chen B; Chen H; Hou Y; Xu J; Teale S; Bertens K; Chen H; Proppe A; Zhou Q; Yu D; Xu K; Vafaie M; Liu Y; Dong Y; Jung EH; Zheng C; Zhu T; Ning Z; Sargent EH
    Adv Mater; 2021 Oct; 33(41):e2103394. PubMed ID: 34425038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buried Interface Passivation: A Key Strategy to Breakthrough the Efficiency of Perovskite Photovoltaics.
    Huang L; Lou YH; Wang ZK
    Small; 2023 Sep; 19(38):e2302585. PubMed ID: 37196420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers.
    Liang J; Chen Z; Yang G; Wang H; Ye F; Tao C; Fang G
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23152-23159. PubMed ID: 31184462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-Induced Metallization and Defect Suppression at Zipper-like Interdigitated Atomically Thin Interfaces Enabling High-Efficiency Halide Perovskite Solar Cells.
    Tsvetkov N; Khan ME; Moon BC; Kim YH; Kang JK
    ACS Nano; 2021 Jan; 15(1):1805-1816. PubMed ID: 33320526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphdiyne: Bridging SnO
    Zhang S; Si H; Fan W; Shi M; Li M; Xu C; Zhang Z; Liao Q; Sattar A; Kang Z; Zhang Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11573-11582. PubMed ID: 32259338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Ethanolamine ZnO Nanoparticle Passivation for Perovskite Interface Stability and Highly Efficient Solar Cells.
    Sánchez-Godoy HE; Salim KMM; Rodríguez-Rojas R; Zarazúa I; Masi S
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perovskite solar cells with atomically coherent interlayers on SnO
    Min H; Lee DY; Kim J; Kim G; Lee KS; Kim J; Paik MJ; Kim YK; Kim KS; Kim MG; Shin TJ; Il Seok S
    Nature; 2021 Oct; 598(7881):444-450. PubMed ID: 34671136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency MAPbI
    Yuan S; Wang J; Yang K; Wang P; Zhang X; Zhan Y; Zheng L
    Nanoscale; 2018 Oct; 10(40):18909-18914. PubMed ID: 30283942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cesium Acetate-Induced Interfacial Compositional Change and Graded Band Level in MAPbI
    Jena AK; Ishii A; Guo Z; Kamarudin MA; Hayase S; Miyasaka T
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33631-33637. PubMed ID: 32628004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Dot Interface-Mediated CsPbIBr
    Qi X; Wang J; Tan F; Dong C; Liu K; Li X; Zhang L; Wu H; Wang HL; Qu S; Wang Z; Wang Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55349-55357. PubMed ID: 34762401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer.
    Hou M; Zhang H; Wang Z; Xia Y; Chen Y; Huang W
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30607-30613. PubMed ID: 30118201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI
    Buyruk A; Blätte D; Günther M; Scheel MA; Hartmann NF; Döblinger M; Weis A; Hartschuh A; Müller-Buschbaum P; Bein T; Ameri T
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32894-32905. PubMed ID: 34240843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the Interface Engineering of a SnO
    Wang Y; Mei X; Qiu J; Zhou Q; Jia D; Yu M; Liu J; Zhang X
    J Phys Chem Lett; 2021 Nov; 12(46):11330-11338. PubMed ID: 34780191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells.
    Barbé J; Tietze ML; Neophytou M; Murali B; Alarousu E; Labban AE; Abulikemu M; Yue W; Mohammed OF; McCulloch I; Amassian A; Del Gobbo S
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11828-11836. PubMed ID: 28177212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored conductive fullerenes-based passivator for efficient and stable inverted perovskite solar cells.
    Zheng T; Fan B; Zhao Y; Jin B; Fan L; Peng R
    J Colloid Interface Sci; 2021 Sep; 598():229-237. PubMed ID: 33901848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.