These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34871000)

  • 1. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe-Salpeter Equation.
    Fujita T; Noguchi Y
    J Phys Chem A; 2021 Dec; 125(49):10580-10592. PubMed ID: 34871000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 Oct; 30(39):395501. PubMed ID: 30124435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.
    Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X
    J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsystem-Based GW/Bethe-Salpeter Equation.
    Tölle J; Deilmann T; Rohlfing M; Neugebauer J
    J Chem Theory Comput; 2021 Apr; 17(4):2186-2199. PubMed ID: 33683119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionized, electron-attached, and excited states of molecular systems with spin-orbit coupling: Two-component GW and Bethe-Salpeter implementations.
    Holzer C; Klopper W
    J Chem Phys; 2019 May; 150(20):204116. PubMed ID: 31153216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies.
    Li J; Jin Y; Su NQ; Yang W
    J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist.
    Knysh I; Duchemin I; Blase X; Jacquemin D
    J Chem Phys; 2022 Nov; 157(19):194102. PubMed ID: 36414466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP.
    Wehner J; Brombacher L; Brown J; Junghans C; Çaylak O; Khalak Y; Madhikar P; Tirimbò G; Baumeier B
    J Chem Theory Comput; 2018 Dec; 14(12):6253-6268. PubMed ID: 30404449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory.
    Ma Y; Rohlfing M; Molteni C
    J Chem Theory Comput; 2010 Jan; 6(1):257-65. PubMed ID: 26614336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the Charge-Transfer States at Pentacene/C
    Fujita T; Noguchi Y; Hoshi T
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited-State Geometry Optimization of Small Molecules with Many-Body Green's Functions Theory.
    Çaylak O; Baumeier B
    J Chem Theory Comput; 2021 Feb; 17(2):879-888. PubMed ID: 33399447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excited-state electronic structure of molecules using many-body Green's functions: Quasiparticles and electron-hole excitations with VOTCA-XTP.
    Tirimbò G; Sundaram V; Çaylak O; Scharpach W; Sijen J; Junghans C; Brown J; Ruiz FZ; Renaud N; Wehner J; Baumeier B
    J Chem Phys; 2020 Mar; 152(11):114103. PubMed ID: 32199411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD.
    Jacquemin D; Duchemin I; Blase X
    J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the
    Franzke YJ; Holzer C; Mack F
    J Chem Theory Comput; 2022 Feb; 18(2):1030-1045. PubMed ID: 34981925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Energy Surfaces without Unphysical Discontinuities: The Coulomb Hole Plus Screened Exchange Approach.
    Berger JA; Loos PF; Romaniello P
    J Chem Theory Comput; 2021 Jan; 17(1):191-200. PubMed ID: 33306908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Electron BSE@
    Yao Y; Golze D; Rinke P; Blum V; Kanai Y
    J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.