These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34871038)

  • 1. Molecular Polaritonics: Chemical Dynamics Under Strong Light-Matter Coupling.
    Li TE; Cui B; Subotnik JE; Nitzan A
    Annu Rev Phys Chem; 2022 Apr; 73():43-71. PubMed ID: 34871038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular polaritons for controlling chemistry with quantum optics.
    Herrera F; Owrutsky J
    J Chem Phys; 2020 Mar; 152(10):100902. PubMed ID: 32171209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Challenges in Polaritonic Chemistry.
    Fregoni J; Garcia-Vidal FJ; Feist J
    ACS Photonics; 2022 Apr; 9(4):1096-1107. PubMed ID: 35480492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Coupling in Infrared Plasmonic Cavities.
    Mondal M; Semenov A; Ochoa MA; Nitzan A
    J Phys Chem Lett; 2022 Oct; 13(41):9673-9678. PubMed ID: 36215723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong light-matter interactions: a new direction within chemistry.
    Hertzog M; Wang M; Mony J; Börjesson K
    Chem Soc Rev; 2019 Feb; 48(3):937-961. PubMed ID: 30662987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration-Cavity Polariton Chemistry and Dynamics.
    Dunkelberger AD; Simpkins BS; Vurgaftman I; Owrutsky JC
    Annu Rev Phys Chem; 2022 Apr; 73():429-451. PubMed ID: 35081324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry.
    Luk HL; Feist J; Toppari JJ; Groenhof G
    J Chem Theory Comput; 2017 Sep; 13(9):4324-4335. PubMed ID: 28749690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.
    Zhang Y; Nelson T; Tretiak S
    J Chem Phys; 2019 Oct; 151(15):154109. PubMed ID: 31640366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires.
    Piccione B; Aspetti CO; Cho CH; Agarwal R
    Rep Prog Phys; 2014 Aug; 77(8):086401. PubMed ID: 25093385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiclassical Real-Time Nuclear-Electronic Orbital Dynamics for Molecular Polaritons: Unified Theory of Electronic and Vibrational Strong Couplings.
    Li TE; Tao Z; Hammes-Schiffer S
    J Chem Theory Comput; 2022 May; 18(5):2774-2784. PubMed ID: 35420037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Theoretical Perspective on Molecular Polaritonics.
    Sánchez-Barquilla M; Fernández-Domínguez AI; Feist J; García-Vidal FJ
    ACS Photonics; 2022 Jun; 9(6):1830-1841. PubMed ID: 35726239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Coupling between Localized Surface Plasmons and Molecules by Coupled Cluster Theory.
    Fregoni J; Haugland TS; Pipolo S; Giovannini T; Koch H; Corni S
    Nano Lett; 2021 Aug; 21(15):6664-6670. PubMed ID: 34283614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale dynamics simulations of molecular polaritons: The effect of multiple cavity modes on polariton relaxation.
    Tichauer RH; Feist J; Groenhof G
    J Chem Phys; 2021 Mar; 154(10):104112. PubMed ID: 33722041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polariton chemistry: controlling molecular dynamics with optical cavities.
    Ribeiro RF; Martínez-Martínez LA; Du M; Campos-Gonzalez-Angulo J; Yuen-Zhou J
    Chem Sci; 2018 Aug; 9(30):6325-6339. PubMed ID: 30310561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom Assisted Photochemistry in Optical Cavities.
    Davidsson E; Kowalewski M
    J Phys Chem A; 2020 Jun; 124(23):4672-4677. PubMed ID: 32392061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong Light-Matter Interactions in Chiral Plasmonic-Excitonic Systems Assembled on DNA Origami.
    Zhu J; Wu F; Han Z; Shang Y; Liu F; Yu H; Yu L; Li N; Ding B
    Nano Lett; 2021 Apr; 21(8):3573-3580. PubMed ID: 33830773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perovskite semiconductors for room-temperature exciton-polaritonics.
    Su R; Fieramosca A; Zhang Q; Nguyen HS; Deleporte E; Chen Z; Sanvitto D; Liew TCH; Xiong Q
    Nat Mater; 2021 Oct; 20(10):1315-1324. PubMed ID: 34211156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature.
    Wang S; Li S; Chervy T; Shalabney A; Azzini S; Orgiu E; Hutchison JA; Genet C; Samorì P; Ebbesen TW
    Nano Lett; 2016 Jul; 16(7):4368-74. PubMed ID: 27266674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.