BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34871374)

  • 1. Hubness reduction improves clustering and trajectory inference in single-cell transcriptomic data.
    Amblard E; Bac J; Chervov A; Soumelis V; Zinovyev A
    Bioinformatics; 2022 Jan; 38(4):1045-1051. PubMed ID: 34871374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scCRT: a contrastive-based dimensionality reduction model for scRNA-seq trajectory inference.
    Shi Y; Wan J; Zhang X; Liang T; Yin Y
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCHNEL: scalable clustering of high dimensional single-cell data.
    Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive empirical comparison of hubness reduction in high-dimensional spaces.
    Feldbauer R; Flexer A
    Knowl Inf Syst; 2019; 59(1):137-166. PubMed ID: 32647403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGAMNN: Graph Antoencoder-Based Single-Cell RNA Sequencing Data Integration Algorithm Using Mutual Nearest Neighbors.
    Zhang B; Wu H; Wang Y; Xuan C; Gao J
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5665-5674. PubMed ID: 37656653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks.
    Buterez D; Bica I; Tariq I; Andrés-Terré H; Liò P
    Bioinformatics; 2022 Feb; 38(5):1277-1286. PubMed ID: 34864884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ILoReg: a tool for high-resolution cell population identification from single-cell RNA-seq data.
    Smolander J; Junttila S; Venäläinen MS; Elo LL
    Bioinformatics; 2021 May; 37(8):1107-1114. PubMed ID: 33151294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. netAE: semi-supervised dimensionality reduction of single-cell RNA sequencing to facilitate cell labeling.
    Dong Z; Alterovitz G
    Bioinformatics; 2021 Apr; 37(1):43-49. PubMed ID: 32726427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ASURAT: functional annotation-driven unsupervised clustering of single-cell transcriptomes.
    Iida K; Kondo J; Wibisana JN; Inoue M; Okada M
    Bioinformatics; 2022 Sep; 38(18):4330-4336. PubMed ID: 35924984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FlowGrid enables fast clustering of very large single-cell RNA-seq data.
    Fang X; Ho JWK
    Bioinformatics; 2021 Dec; 38(1):282-283. PubMed ID: 34289014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GNN-based embedding for clustering scRNA-seq data.
    Ciortan M; Defrance M
    Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal transport improves cell-cell similarity inference in single-cell omics data.
    Huizing GJ; Peyré G; Cantini L
    Bioinformatics; 2022 Apr; 38(8):2169-2177. PubMed ID: 35157031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network.
    Wang J; Xia J; Wang H; Su Y; Zheng CH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.