BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 34871496)

  • 1. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells.
    Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically Porous N-Doped Carbon Nanotubes/Reduced Graphene Oxide Composite for Promoting Flavin-Based Interfacial Electron Transfer in Microbial Fuel Cells.
    Wu X; Qiao Y; Shi Z; Tang W; Li CM
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11671-11677. PubMed ID: 29557635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PDA-Fe
    Zhang C; Zeng X; Xu X; Nie W; Dubey BK; Ding W
    Chemosphere; 2024 May; 355():141764. PubMed ID: 38521108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing extracellular electron transfer through selective enrichment of Geobacter with Fe@CN-modified carbon-based anode in microbial fuel cells.
    Cheng XL; Xu Q; Yang QW; Tian RR; Li B; Yan S; Zhang XY; Zhou J; Yong XY
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):28640-28651. PubMed ID: 36396764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced microorganism attachment and flavin excretion in microbial fuel cells via an N,S-codoped carbon microflower anode.
    Cheng X; Liu B; Qiu Y; Liu K; Fang Z; Qi J; Ma Z; Sun T; Liu S
    J Colloid Interface Sci; 2023 Oct; 648():327-337. PubMed ID: 37301157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring spatial structure of electroactive biofilm for enhanced activity and direct electron transfer on iron phthalocyanine modified anode in microbial fuel cells.
    Li Y; Liu J; Chen X; Yuan X; Li N; He W; Feng Y
    Biosens Bioelectron; 2021 Nov; 191():113410. PubMed ID: 34144473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductive and capacitive network for enriching the exoelectrogens and enhancing the extracellular electron transfer in microbial fuel cells.
    Cheng X; Qiu Y; Wang Y; Yu M; Qi J; Ma Z; Sun T; Liu S
    J Colloid Interface Sci; 2024 Jun; 664():309-318. PubMed ID: 38479267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting bioelectricity generation in microbial fuel cells via biomimetic Fe-N-S-C nanozymes.
    Xiang Y; Liu T; Jia B; Zhang L; Su X
    Biosens Bioelectron; 2023 Jan; 220():114895. PubMed ID: 36375257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous boost of anodic electron transfer and exoelectrogens enrichment by decorating electrospinning carbon nanofibers in microbial fuel cell.
    Lin X; Zheng L; Zhang M; Qin Y; Liu Y; Li H; Li C
    Chemosphere; 2022 Dec; 308(Pt 2):136434. PubMed ID: 36113652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer.
    Liu K; Ma Z; Li X; Qiu Y; Liu D; Liu S
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadium nitride decorated carbon cloth anode promotes aniline degradation and electricity generation of MFCs by efficiently enriching electroactive bacteria and promoting extracellular electron transfer.
    Zou J; Chang Q; Guo C; Yan M
    J Environ Manage; 2023 Nov; 346():119048. PubMed ID: 37742561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst.
    Yang Q; Yang S; Liu G; Zhou B; Yu X; Yin Y; Yang J; Zhao H
    Chemosphere; 2021 Apr; 268():128800. PubMed ID: 33143885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-type skeleton induced Geobacter enrichment and tailored bio-capacitance of electroactive bioanode for efficient electron transfer in microbial fuel cells.
    Li C; Feng Y; Liang D; Zhang L; Tian Y; Yadav RS; He W
    Sci Total Environ; 2022 May; 821():153123. PubMed ID: 35051486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Hierarchical Co
    Wang Y; Cheng X; Liu K; Dai X; Qi J; Ma Z; Qiu Y; Liu S
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35809-35821. PubMed ID: 35912639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.
    Yu YY; Guo CX; Yong YC; Li CM; Song H
    Chemosphere; 2015 Dec; 140():26-33. PubMed ID: 25439129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Nanomaterial-Modified Anodes in Microbial Fuel Cells: Advances and Perspectives.
    Jiang YJ; Hui S; Jiang LP; Zhu JJ
    Chemistry; 2023 Jan; 29(1):e202202002. PubMed ID: 36161734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced electroactive bacteria enrichment and facilitated extracellular electron transfer in microbial fuel cells via polydopamine coated graphene aerogel anode.
    Guo W; Chen Y; Wang J; Cui L; Yan Y
    Bioelectrochemistry; 2024 Jun; 160():108769. PubMed ID: 38955054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimetal-organic framework-derived porous CoFe
    Ren T; Liu Y; Shi C; Li C
    J Colloid Interface Sci; 2023 Aug; 643():428-436. PubMed ID: 37086532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Structure Regulated by Selection Pressure on Bacterial Adhesion Optimized the Viability Stratification Structure of Electroactive Biofilms.
    Chen X; Li Y; Wu J; Li N; He W; Feng Y; Liu J
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2754-2767. PubMed ID: 34982530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.