These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 34871532)
1. Wheelchair driving strategies: A comparison between standard joystick and gaze-based control. Maule L; Zanetti M; Luchetti A; Tomasin P; Dallapiccola M; Covre N; Guandalini G; De Cecco M Assist Technol; 2023 Mar; 35(2):180-192. PubMed ID: 34871532 [TBL] [Abstract][Full Text] [Related]
2. Assessment of joystick control during the performance of powered wheelchair driving tasks. Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435 [TBL] [Abstract][Full Text] [Related]
3. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities. Wästlund E; Sponseller K; Pettersson O; Bared A J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901 [TBL] [Abstract][Full Text] [Related]
4. A facial expression controlled wheelchair for people with disabilities. Rabhi Y; Mrabet M; Fnaiech F Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084 [TBL] [Abstract][Full Text] [Related]
5. Simulation System of Electric-Powered Wheelchairs for Training Purposes. Hernandez-Ossa KA; Montenegro-Couto EH; Longo B; Bissoli A; Sime MM; Lessa HM; Enriquez IR; Frizera-Neto A; Bastos-Filho T Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599692 [TBL] [Abstract][Full Text] [Related]
6. Development of a wheelchair virtual driving environment: trials with subjects with traumatic brain injury. Spaeth DM; Mahajan H; Karmarkar A; Collins D; Cooper RA; Boninger ML Arch Phys Med Rehabil; 2008 May; 89(5):996-1003. PubMed ID: 18452751 [TBL] [Abstract][Full Text] [Related]
7. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair. Rojas M; Ponce P; Molina A Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4593-4596. PubMed ID: 28269298 [TBL] [Abstract][Full Text] [Related]
8. Comparison between joystick- and gaze-controlled electric wheelchair during narrow doorway crossing: Feasibility study and movement analysis. Letaief M; Rezzoug N; Gorce P Assist Technol; 2021 Jan; 33(1):26-37. PubMed ID: 30945980 [TBL] [Abstract][Full Text] [Related]
9. Comparison of virtual wheelchair driving performance of people with traumatic brain injury using an isometric and a conventional joystick. Mahajan H; Spaeth DM; Dicianno BE; Collins DM; Boninger ML; Cooper RA Arch Phys Med Rehabil; 2011 Aug; 92(8):1298-304. PubMed ID: 21807150 [TBL] [Abstract][Full Text] [Related]
10. Assessment of wheelchair driving performance in a virtual reality-based simulator. Mahajan HP; Dicianno BE; Cooper RA; Ding D J Spinal Cord Med; 2013 Jul; 36(4):322-32. PubMed ID: 23820148 [TBL] [Abstract][Full Text] [Related]
11. Driving performance in a power wheelchair simulator. Archambault PS; Tremblay S; Cachecho S; Routhier F; Boissy P Disabil Rehabil Assist Technol; 2012 May; 7(3):226-33. PubMed ID: 22023379 [TBL] [Abstract][Full Text] [Related]
12. Preliminary evaluation of variable compliance joystick for people with multiple sclerosis. Mahajan HP; Spaeth DM; Dicianno BE; Brown K; Cooper RA J Rehabil Res Dev; 2014; 51(6):951-62. PubMed ID: 25356558 [TBL] [Abstract][Full Text] [Related]
13. SenseJoy, a pluggable solution for assessing user behavior during powered wheelchair driving tasks. Rabreau O; Chevallier S; Chassagne L; Monacelli E J Neuroeng Rehabil; 2019 Nov; 16(1):134. PubMed ID: 31694645 [TBL] [Abstract][Full Text] [Related]
14. Upper Body-Based Power Wheelchair Control Interface for Individuals With Tetraplegia. Thorp EB; Abdollahi F; Chen D; Farshchiansadegh A; Lee MH; Pedersen JP; Pierella C; Roth EJ; Seanez Gonzalez I; Mussa-Ivaldi FA IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):249-60. PubMed ID: 26054071 [TBL] [Abstract][Full Text] [Related]
15. Vision based interface system for hands free control of an Intelligent Wheelchair. Ju JS; Shin Y; Kim EY J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132 [TBL] [Abstract][Full Text] [Related]
16. A multimodal interface to resolve the Midas-Touch problem in gaze controlled wheelchair. Meena YK; Cecotti H; Wong-Lin K; Prasad G Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():905-908. PubMed ID: 29060019 [TBL] [Abstract][Full Text] [Related]
17. A.Eye Drive: Gaze-based semi-autonomous wheelchair interface. Subramanian M; Songur N; Adjei D; Orlov P; Faisal AA Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5967-5970. PubMed ID: 31947206 [TBL] [Abstract][Full Text] [Related]
18. Braking electric-powered wheelchairs: effect of braking method, seatbelt, and legrests. Cooper RA; Dvorznak MJ; O'Connor TJ; Boninger ML; Jones DK Arch Phys Med Rehabil; 1998 Oct; 79(10):1244-9. PubMed ID: 9779678 [TBL] [Abstract][Full Text] [Related]
19. Comparison of virtual and real electric powered wheelchair driving using a position sensing joystick and an isometric joystick. Cooper RA; Spaeth DM; Jones DK; Boninger ML; Fitzgerald SG; Guo S Med Eng Phys; 2002 Dec; 24(10):703-8. PubMed ID: 12460730 [TBL] [Abstract][Full Text] [Related]
20. Autonomous assistance navigation for robotic wheelchairs in confined spaces. Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]