These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 34871950)
1. Improving image contrast and accuracy in velocity estimation by convolution filters for intracardiac blood flow imaging. Mozumi M; Nagaoka R; Hasegawa H Ultrasonics; 2022 Mar; 120():106650. PubMed ID: 34871950 [TBL] [Abstract][Full Text] [Related]
2. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function. Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445 [TBL] [Abstract][Full Text] [Related]
3. Estimation of velocity vectors in synthetic aperture ultrasound imaging. Jensen JA; Oddershede N IEEE Trans Med Imaging; 2006 Dec; 25(12):1637-44. PubMed ID: 17167998 [TBL] [Abstract][Full Text] [Related]
4. Blind Deconvolution of Ultrasound Images Using l1 -Norm-Constrained Block-Based Damped Variable Step-Size Multichannel LMS Algorithm. Hasan MK; Rabbi MS; Lee SY IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Aug; 63(8):1116-30. PubMed ID: 27295663 [TBL] [Abstract][Full Text] [Related]
5. A blind deconvolution method incorporated with anatomical-based filtering for partial volume correction: Validations with Wu J; Liu H; Hashemi Zonouz T; Sandoval VM; Mohy-Ud-Din H; Lampert RJ; Sinusas AJ; Liu C; Liu YH Med Phys; 2017 Dec; 44(12):6435-6446. PubMed ID: 28994458 [TBL] [Abstract][Full Text] [Related]
6. 2-D left ventricular flow estimation by combining speckle tracking with Navier-Stokes-based regularization: an in silico, in vitro and in vivo study. Gao H; Bijnens N; Coisne D; Lugiez M; Rutten M; D'hooge J Ultrasound Med Biol; 2015 Jan; 41(1):99-113. PubMed ID: 25438850 [TBL] [Abstract][Full Text] [Related]
7. Coded ultrasound for blood flow estimation using subband processing. Gran F; Udesen J; Nielsen MB; Jensen JA IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869 [TBL] [Abstract][Full Text] [Related]
8. Deconvolution of vibroacoustic images using a simulation model based on a three dimensional point spread function. Perciano T; Urban MW; Mascarenhas ND; Fatemi M; Frery AC; Silva GT Ultrasonics; 2013 Jan; 53(1):36-44. PubMed ID: 22617182 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and A-line acquisition velocity. Xu T; Bashford G IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):898-908. PubMed ID: 23661124 [TBL] [Abstract][Full Text] [Related]
10. Joint Blind Deconvolution and Robust Principal Component Analysis for Blood Flow Estimation in Medical Ultrasound Imaging. Pham DH; Basarab A; Zemmoura I; Remenieras JP; Kouame D IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):969-978. PubMed ID: 32997626 [TBL] [Abstract][Full Text] [Related]
11. High-Frame-Rate Contrast-Enhanced Echocardiography Using Diverging Waves: 2-D Motion Estimation and Compensation. Nie L; Cowell DMJ; Carpenter TM; Mclaughlan JR; Cubukcu AA; Freear S IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):359-371. PubMed ID: 30575531 [TBL] [Abstract][Full Text] [Related]
12. Adaptive clutter filtering for ultrasound color flow imaging. Yoo YM; Managuli R; Kim Y Ultrasound Med Biol; 2003 Sep; 29(9):1311-20. PubMed ID: 14553809 [TBL] [Abstract][Full Text] [Related]
13. How to optimize intracardiac blood flow tracking by echocardiographic particle image velocimetry? Exploring the influence of data acquisition using computer-generated data sets. Gao H; Claus P; Amzulescu MS; Stankovic I; D'hooge J; Voigt JU Eur Heart J Cardiovasc Imaging; 2012 Jun; 13(6):490-9. PubMed ID: 22173934 [TBL] [Abstract][Full Text] [Related]
14. High Frame Rate Ultrasound Particle Image Velocimetry for Estimating High Velocity Flow Patterns in the Left Ventricle. Voorneveld J; Muralidharan A; Hope T; Vos HJ; Kruizinga P; van der Steen AFW; Gijsen FJH; Kenjeres S; de Jong N; Bosch JG IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Dec; 65(12):2222-2232. PubMed ID: 29990263 [TBL] [Abstract][Full Text] [Related]
15. Adaptive Spectral Estimation Methods in Color Flow Imaging. Karabiyik Y; Ekroll IK; Eik-Nes SH; Avdal J; Lovstakken L IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1839-1851. PubMed ID: 27824564 [TBL] [Abstract][Full Text] [Related]
16. Debiasing-Based Noise Suppression for Ultrafast Ultrasound Microvessel Imaging. Huang C; Song P; Gong P; Trzasko JD; Manduca A; Chen S IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1281-1291. PubMed ID: 31135357 [TBL] [Abstract][Full Text] [Related]
17. A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images. Gao H; Choi HF; Claus P; Boonen S; Jaecques S; Van Lenthe GH; Van der Perre G; Lauriks W; D'hooge J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):404-9. PubMed ID: 19251529 [TBL] [Abstract][Full Text] [Related]
18. Adaptive clutter filtering based on sparse component analysis in ultrasound color flow imaging. Li P; Yang X; Zhang D; Bian Z IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1582-96. PubMed ID: 18986949 [TBL] [Abstract][Full Text] [Related]
19. Quantitative real-time blood flow estimation with intravascular ultrasound in the presence of in-plane flow. de Ana FJ; O'Donnell M IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1952-61. PubMed ID: 16422407 [TBL] [Abstract][Full Text] [Related]