BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34872170)

  • 1. Interference of CDOM in remote sensing of suspended particulate matter (SPM) based on MODIS in the Persian Gulf and Oman Sea.
    Mohammadpour G; Pirasteh S
    Mar Pollut Bull; 2021 Dec; 173(Pt A):113104. PubMed ID: 34872170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote sensing estimation of colored dissolved organic matter (CDOM) from GOCI measurements in the Bohai Sea and Yellow Sea.
    Ling Z; Sun D; Wang S; Qiu Z; Huan Y; Mao Z; He Y
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6872-6885. PubMed ID: 31875926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote-sensing monitoring of colored dissolved organic matter in the Arctic Ocean.
    Huang J; Chen J; Mu Y; Cao C; Shen H
    Mar Pollut Bull; 2024 Jul; 204():116529. PubMed ID: 38824705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote sensing approach for the estimation of particulate organic carbon in coastal waters based on suspended particulate concentration and particle median size.
    Wang F; Wang Y; Chen Y; Liu K
    Mar Pollut Bull; 2020 Sep; 158():111382. PubMed ID: 32568084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple optical model to estimate suspended particulate matter in Yellow River Estuary.
    Qiu Z
    Opt Express; 2013 Nov; 21(23):27891-904. PubMed ID: 24514305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China.
    Hu M; Zhang Y; Ma R; Xue K; Cao Z; Chu Q; Jing Y
    Sci Total Environ; 2021 Jun; 771():144811. PubMed ID: 33545474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water optical properties over or around coral reefs in the coastal region: implications for coral reef remote sensing.
    Jiang G; Chen S; Wang X; Deng W; Zhuang Z; Zeng L; Zhang C; Yu W
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92768-92781. PubMed ID: 37493907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
    Simis SG; Ylöstalo P; Kallio KY; Spilling K; Kutser T
    PLoS One; 2017; 12(4):e0173357. PubMed ID: 28384157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy.
    He J; Chen Y; Wu J; Stow DA; Christakos G
    Water Res; 2020 Mar; 171():115403. PubMed ID: 31901508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean.
    Aurin D; Mannino A; Lary DJ
    Appl Sci (Basel); 2018; 8(12):2687. PubMed ID: 31032080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid approach to estimate chromophoric dissolved organic matter in turbid estuaries from satellite measurements: a case study for Tampa Bay.
    Le C; Hu C
    Opt Express; 2013 Aug; 21(16):18849-71. PubMed ID: 23938799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remote estimates of CDOM using Sentinel-2 remote sensing data in reservoirs with different trophic states across China.
    Shang Y; Liu G; Wen Z; Jacinthe PA; Song K; Zhang B; Lyu L; Li S; Wang X; Yu X
    J Environ Manage; 2021 May; 286():112275. PubMed ID: 33684799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of chromophoric dissolved organic matter and its controlling factors in Beaufort Sea using mixture density network and Sentinel-3 data.
    Huang J; Chen J; Wu M; Gong L; Zhang X
    Sci Total Environ; 2022 Nov; 849():157677. PubMed ID: 35926633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased dominance of terrestrial component in dissolved organic matter in Chinese lakes.
    Zhao Z; Shi K; Zhang Y; Zhou Y; Qin B
    Water Res; 2024 Feb; 249():121019. PubMed ID: 38113601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption and backscattering coefficients and their relations to water constituents of Poyang Lake, China.
    Wu G; Cui L; Duan H; Fei T; Liu Y
    Appl Opt; 2011 Dec; 50(34):6358-68. PubMed ID: 22192987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for the interpretation of hyperspectral remote-sensing reflectance.
    Lee Z; Carder KL; Hawes SK; Steward RG; Peacock TG; Davis CO
    Appl Opt; 1994 Aug; 33(24):5721-32. PubMed ID: 20935974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Eutrophication and DOC Sources Tracing in the Sea Area around Dajin Island Using CASI and MODIS Images Coupled with CDOM Optical Properties.
    Ma S; Zhang X; Xiong Y; Huang G; Han Y; Funari V
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decline of suspended particulate matter concentrations in Lake Taihu from 1984 to 2020: observations from Landsat TM and OLI.
    Yin Z; Li J; Liu Y; Zhang F; Wang S; Xie Y; Gao M
    Opt Express; 2022 Jun; 30(13):22572-22589. PubMed ID: 36224952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.