These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34872201)
1. Preliminary Tests of a Laboratory Chamber Technique Intended to Simulate Pesticide Volatility in the Field. Prueger JH; Pfeiffer RL J Environ Qual; 1994 Sep; 23(5):1089-1093. PubMed ID: 34872201 [TBL] [Abstract][Full Text] [Related]
2. Soil moisture and metolachlor volatilization observations over three years. Gish TJ; Prueger JH; Kustas WP; Daughtry CS; McKee LG; Russ A; Hatfield JL J Environ Qual; 2009; 38(5):1785-95. PubMed ID: 19643743 [TBL] [Abstract][Full Text] [Related]
3. Photodegradation and volatility of pesticides: chamber experiments. Kromer T; Ophoff H; Stork A; Führ F Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858 [TBL] [Abstract][Full Text] [Related]
4. Solar radiation, relative humidity, and soil water effects on metolachlor volatilization. Prueger JH; Gish TJ; McConnell LL; Mckee LG; Hatfield JL; Kustas WP Environ Sci Technol; 2005 Jul; 39(14):5219-26. PubMed ID: 16082950 [TBL] [Abstract][Full Text] [Related]
5. Predicting and measuring environmental concentration of pesticides in air after soil application. Ferrari F; Trevisan M; Capri E J Environ Qual; 2003; 32(5):1623-33. PubMed ID: 14535302 [TBL] [Abstract][Full Text] [Related]
6. Comparison of field-scale herbicide runoff and volatilization losses: an eight-year field investigation. Gish TJ; Prueger JH; Daughtry CS; Kustas WP; McKee LG; Russ AL; Hatfield JL J Environ Qual; 2011; 40(5):1432-42. PubMed ID: 21869505 [TBL] [Abstract][Full Text] [Related]
7. Simulating the impact of volatilization on atmospheric concentrations of pesticides with the 3D chemistry-transport model CHIMERE: Method development and application to S-metolachlor and folpet. Couvidat F; Bedos C; Gagnaire N; Carra M; Ruelle B; Martin P; Poméon T; Alletto L; Armengaud A; Quivet E J Hazard Mater; 2022 Feb; 424(Pt B):127497. PubMed ID: 34673398 [TBL] [Abstract][Full Text] [Related]
8. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants. Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355 [TBL] [Abstract][Full Text] [Related]
9. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber. Wolters A; Kromer T; Linnemann V; Schäffer A; Vereecken H Environ Toxicol Chem; 2003 Apr; 22(4):791-7. PubMed ID: 12685714 [TBL] [Abstract][Full Text] [Related]
10. An analysis of the climate change effects on pesticide vapor drift from ground-based pesticide applications to cotton. Kannan N Sci Rep; 2023 Jun; 13(1):9740. PubMed ID: 37328554 [TBL] [Abstract][Full Text] [Related]
11. Field-scale remediation of a metolachlor-contaminated spill site using zerovalent iron. Comfort SD; Shea PJ; Machacek TA; Gaber H; Oh BT J Environ Qual; 2001; 30(5):1636-43. PubMed ID: 11577871 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and fate of pesticides in four contrasting agricultural settings in the United States. Steele GV; Johnson HM; Sandstrom MW; Capel PD; Barbash JE J Environ Qual; 2008; 37(3):1116-32. PubMed ID: 18453432 [TBL] [Abstract][Full Text] [Related]
13. Herbicides in ground water beneath Nebraska's Management Systems Evaluation Area. Spalding RF; Exner ME; Snow DD; Cassada DA; Burbach ME; Monson SJ J Environ Qual; 2003; 32(1):92-9. PubMed ID: 12549547 [TBL] [Abstract][Full Text] [Related]
14. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Scholtz MT; Bidleman TF Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778 [TBL] [Abstract][Full Text] [Related]
15. Volatility of propoxur from different surface materials commonly found in homes. Kuo HW; Lee HM Chemosphere; 1999 May; 38(11):2695-705. PubMed ID: 10204242 [TBL] [Abstract][Full Text] [Related]
16. Observed volatilization fluxes of S-metolachlor and benoxacor applied on soil with and without crop residues. Bedos C; Alletto L; Durand B; Fanucci O; Brut A; Bourdat-Deschamps M; Giuliano S; Loubet B; Ceschia E; Benoit P Environ Sci Pollut Res Int; 2017 Feb; 24(4):3985-3996. PubMed ID: 27915427 [TBL] [Abstract][Full Text] [Related]
17. Influence of Adjuvants on Pesticide Soil-Air Partition Coefficients: Laboratory Measurements and Predicted Effects on Volatilization. Das S; Hageman KJ Environ Sci Technol; 2020 Jun; 54(12):7302-7308. PubMed ID: 32436696 [TBL] [Abstract][Full Text] [Related]
18. Relative importance of gas-phase diffusive and advective tichloroethene (TCE) fluxes in the unsaturated zone under natural conditions. Choi JW; Tillman FD; Smith JA Environ Sci Technol; 2002 Jul; 36(14):3157-64. PubMed ID: 12141498 [TBL] [Abstract][Full Text] [Related]
19. Technical note: Headspace analysis of explosive compounds using a novel sampling chamber. DeGreeff L; Rogers DA; Katilie C; Johnson K; Rose-Pehrsson S Forensic Sci Int; 2015 Mar; 248():55-60. PubMed ID: 25596555 [TBL] [Abstract][Full Text] [Related]
20. Evaporation drift of pesticides active ingredients. De Schampheleire M; Nuyttens D; De Keyser D; Spanoghe P Commun Agric Appl Biol Sci; 2008; 73(4):739-42. PubMed ID: 19226822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]