These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34872201)
21. Metolachlor dechlorination by zerovalent iron during unsaturated transport. Gaber HM; Comfort SD; Shea PJ; Machacek TA J Environ Qual; 2002; 31(3):962-9. PubMed ID: 12026101 [TBL] [Abstract][Full Text] [Related]
22. Understanding Trends in Pesticide Volatilization from Agricultural Fields Using the Pesticide Loss via Volatilization Model. Taylor M; Lyons SM; Davie-Martin CL; Geoghegan TS; Hageman KJ Environ Sci Technol; 2020 Feb; 54(4):2202-2209. PubMed ID: 31858785 [TBL] [Abstract][Full Text] [Related]
23. Holistic assessment of occurrence and fate of metolachlor within environmental compartments of agricultural watersheds. Rose CE; Coupe RH; Capel PD; Webb RMT Sci Total Environ; 2018 Jan; 612():708-719. PubMed ID: 28866398 [TBL] [Abstract][Full Text] [Related]
24. An improved screening tool for predicting volatilization of pesticides applied to soils. Davie-Martin CL; Hageman KJ; Chin YP Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927 [TBL] [Abstract][Full Text] [Related]
25. Reduced surface runoff losses of metolachlor in narrow-row compared to wide-row soybean. Krutz LJ; Koger CH; Locke MA; Steinriede RW J Environ Qual; 2007; 36(5):1331-7. PubMed ID: 17636295 [TBL] [Abstract][Full Text] [Related]
26. Comparison of enzyme-linked immunosorbent assay and gas chromatography procedures for the detection of cyanazine and metolachlor in surface water samples. Schraer SM; Shaw DR; Boyette M; Coupe RH; Thurman EM J Agric Food Chem; 2000 Dec; 48(12):5881-6. PubMed ID: 11312764 [TBL] [Abstract][Full Text] [Related]
27. Reduction in metolachlor and degradate concentrations in shallow groundwater through cover crop use. White PM; Potter TL; Bosch DD; Joo H; Schaffer B; Muñoz-Carpena R J Agric Food Chem; 2009 Oct; 57(20):9658-67. PubMed ID: 19799423 [TBL] [Abstract][Full Text] [Related]
28. Sorption and metabolism of metolachlor by a bacterial community. Liu SY; Zheng Z; Zhang R; Bollag JM Appl Environ Microbiol; 1989 Mar; 55(3):733-40. PubMed ID: 16347880 [TBL] [Abstract][Full Text] [Related]
29. Measuring Leaf Penetration and Volatilization of Chlorothalonil and Epoxiconazole Applied on Wheat Leaves in a Laboratory-Scale Experiment. Lichiheb N; Bedos C; Personne E; Benoit P; Bergheaud V; Fanucci O; Bouhlel J; Barriuso E J Environ Qual; 2015 Nov; 44(6):1782-90. PubMed ID: 26641330 [TBL] [Abstract][Full Text] [Related]
30. Fungicide dissipation and impact on metolachlor aerobic soil degradation and soil microbial dynamics. White PM; Potter TL; Culbreath AK Sci Total Environ; 2010 Feb; 408(6):1393-402. PubMed ID: 20015538 [TBL] [Abstract][Full Text] [Related]
31. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants. Tong Y; Wu Y; Zhao C; Xu Y; Lu J; Xiang S; Zong F; Wu X J Agric Food Chem; 2017 Aug; 65(34):7371-7378. PubMed ID: 28783335 [TBL] [Abstract][Full Text] [Related]
32. Understanding the tropospheric transport and fate of agricultural pesticides. Hebert VR; Miller GC Rev Environ Contam Toxicol; 2004; 181():1-36. PubMed ID: 14738196 [TBL] [Abstract][Full Text] [Related]
33. Adsorption and desorption of metolachlor and metolachlor metabolites in vegetated filter strip and cultivated soil. Krutz LJ; Senseman SA; McInnes KJ; Hoffman DW; Tierney DP J Environ Qual; 2004; 33(3):939-45. PubMed ID: 15224930 [TBL] [Abstract][Full Text] [Related]
34. Stream transport of herbicides and metabolites in a tile-drained, agricultural watershed. David MB; Gentry LE; Starks KM; Cooke RA J Environ Qual; 2003; 32(5):1790-801. PubMed ID: 14535322 [TBL] [Abstract][Full Text] [Related]
35. Prediction of pesticide volatilization with PELMO 3.31. Ferrari F; Klein M; Capri E; Trevisan M Chemosphere; 2005 Jul; 60(5):705-13. PubMed ID: 15963809 [TBL] [Abstract][Full Text] [Related]
36. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. Satapanajaru T; Comfort SD; Shea PJ J Environ Qual; 2003; 32(5):1726-34. PubMed ID: 14535314 [TBL] [Abstract][Full Text] [Related]
37. Metabolism of metolachlor by the fungus Cunninghamella elegans. Pothuluri JV; Evans FE; Doerge DR; Churchwell MI; Cerniglia CE Arch Environ Contam Toxicol; 1997 Feb; 32(2):117-25. PubMed ID: 9069185 [TBL] [Abstract][Full Text] [Related]
38. Field testing passive air samplers for current use pesticides in a tropical environment. Gouin T; Wania F; Ruepert C; Castillo LE Environ Sci Technol; 2008 Sep; 42(17):6625-30. PubMed ID: 18800540 [TBL] [Abstract][Full Text] [Related]
39. Assessing the Fate of an Aromatic Hydrocarbon Fluid in Agricultural Spray Applications Using the Three-Stage ADVOCATE Model Framework. Toose L; Warren C; Mackay D; Parkerton T; Letinski D; Manning R; Connelly M; Rohde A; Fritz B; Hoffmann WC J Agric Food Chem; 2015 Aug; 63(31):6866-75. PubMed ID: 26230997 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the efficiencies of different types of adsorbents at trapping currently used pesticides in the gaseous phase using the technique of high-volume sampling. Dobson R; Scheyer A; Rizet AL; Mirabel P; Millet M Anal Bioanal Chem; 2006 Nov; 386(6):1781-9. PubMed ID: 17019578 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]