These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34872213)

  • 1. A Simple Equation for Predicting Preferential Flow Solute Concentrations.
    Steenhuis TS; Boll J; Shalit G; Selker JS; Merwin IA
    J Environ Qual; 1994 Sep; 23(5):1058-1064. PubMed ID: 34872213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions.
    Allaire SE; Gupta SC; Nieber J; Moncrief JF
    J Contam Hydrol; 2002 Oct; 58(3-4):299-321. PubMed ID: 12400838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of macropore continuity and tortuosity on solute transport in soils: 2. Interactions with model assumptions for macropore description.
    Allaire SE; Gupta SC; Nieber J; Moncrief JF
    J Contam Hydrol; 2002 Oct; 58(3-4):283-98. PubMed ID: 12400837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents.
    Karup D; Moldrup P; Paradelo M; Katuwal S; Norgaard T; Greve MH; de Jonge LW
    J Contam Hydrol; 2016 Sep; 192():194-202. PubMed ID: 27509309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.
    Tong J; Hu BX; Yang J; Zhu Y
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):12444-55. PubMed ID: 26983916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-domain solute transfer and transport processes: evaluation in batch and transport experiments.
    Haws NW; Das BS; Rao PS
    J Contam Hydrol; 2004 Dec; 75(3-4):257-80. PubMed ID: 15610902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solute movement through an allophanic soil.
    Magesan GN; Vogeler I; Clothier BE; Green SR; Lee R
    J Environ Qual; 2003; 32(6):2325-33. PubMed ID: 14674557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential flow characteristics of reclaimed mine soils in a surface coal mine dump.
    Gang L; Jun L; Yexin L; Ting W; Yazhuo L; Xinyang F
    Environ Monit Assess; 2017 Jun; 189(6):266. PubMed ID: 28497296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of phosphate through artificial macropores during film and pulse flow.
    Gjettermann B; Hansen HC; Jensen HE; Hansen S
    J Environ Qual; 2004; 33(6):2263-71. PubMed ID: 15537949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spectrum of preferential flow alters solute mobility in soils.
    Radolinski J; Le H; Hilaire SS; Xia K; Scott D; Stewart RD
    Sci Rep; 2022 Mar; 12(1):4261. PubMed ID: 35277572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling depth-variant and domain-specific sorption and biodegradation in dual-permeability media.
    Ray C; Vogel T; Dusek J
    J Contam Hydrol; 2004 May; 70(1-2):63-87. PubMed ID: 15068869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing preferential flow in landfilled municipal solid waste.
    Zhang WJ; Yuan SS
    Waste Manag; 2019 Feb; 84():20-28. PubMed ID: 30691893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.
    Gao G; Fu B; Zhan H; Ma Y
    Water Res; 2013 May; 47(7):2507-22. PubMed ID: 23490106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of alternated drying and wetting on the characteristics of soil preferential flow formation in Honghe Arid Valley.
    Wan YP; Zhao YY; Duan X; Wang KQ; Zhu MX; Lu HX; Tu XY; DU YX
    Ying Yong Sheng Tai Xue Bao; 2021 Jul; 32(7):2397-2406. PubMed ID: 34313057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of biological soil crusts on solute transport characteristics of sandy and loessal soils on the Loess Plateau, China].
    Wang FF; Xiao B; Sun FH; Li SL
    Ying Yong Sheng Tai Xue Bao; 2020 Oct; 31(10):3404-3412. PubMed ID: 33314830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of movement of pesticides towards drains with a preferential flow version of PEARL.
    Tiktak A; Hendriks RF; Boesten JJ
    Pest Manag Sci; 2012 Feb; 68(2):290-302. PubMed ID: 22223200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a dual permeability model within a hydrological catchment modeling framework: 1D application.
    Djabelkhir K; Lauvernet C; Kraft P; Carluer N
    Sci Total Environ; 2017 Jan; 575():1429-1437. PubMed ID: 27773384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities.
    Arora B; Mohanty BP; McGuire JT
    Water Resour Res; 2011 Apr; 47(4):2010WR009451. PubMed ID: 24511165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Geometric Characteristics on Water Flow and Solute Transport at Fracture Intersections.
    Qian J; Liang X; Liu Y; Ma L; Li X; Zhang C
    Ground Water; 2024 Jan; ():. PubMed ID: 38270260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.