These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 34872215)

  • 1. Oxidation of the Root Zone by Aquatic Plants Growing in Gravel-Nutrient Solution Culture.
    Steinberg SL; Coonrod HS
    J Environ Qual; 1994 Sep; 23(5):907-913. PubMed ID: 34872215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and wetland plant species effects on wastewater treatment and root zone oxidation.
    Allen WC; Hook PB; Biederman JA; Stein OR
    J Environ Qual; 2002; 31(3):1010-6. PubMed ID: 12026068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicular-Arbuscular Endomycorrhizal Colonization of Wetland Plants.
    Rickerl DH; Sancho FO; Ananth S
    J Environ Qual; 1994 Sep; 23(5):913-916. PubMed ID: 34872204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and temporal association of As and Fe species on aquatic plant roots.
    Hansel CM; La Force MJ; Fendorf S; Sutton S
    Environ Sci Technol; 2002 May; 36(9):1988-94. PubMed ID: 12026982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient and growth responses of cattail (Typha domingensis) to redox intensity and phosphate availability.
    Li S; Lissner J; Mendelssohn IA; Brix H; Lorenzen B; McKee KL; Miao S
    Ann Bot; 2010 Jan; 105(1):175-84. PubMed ID: 19748907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.
    Tee HC; Seng CE; Noor AM; Lim PE
    Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microcosm study on remediation of explosives-contaminated groundwater using constructed wetlands.
    Sikora FJ; Behrends LL; Phillips WD; Coonrod HS; Bailey E; Bader DF
    Ann N Y Acad Sci; 1997 Nov; 829():202-18. PubMed ID: 9472322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial processes associated with roots of bulbous rush coated with iron plaques.
    Küsel K; Chabbi A; Trinkwalter T
    Microb Ecol; 2003 Oct; 46(3):302-11. PubMed ID: 14502410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does batch operation enhance oxidation in subsurface constructed wetlands?
    Stein OR; Hook PB; Biederman JA; Allen WC; Borden DJ
    Water Sci Technol; 2003; 48(5):149-56. PubMed ID: 14621159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root exudates of wetland plants influenced by nutrient status and types of plant cultivation.
    Wu FY; Chung AK; Tam NF; Wong MH
    Int J Phytoremediation; 2012 Jul; 14(6):543-53. PubMed ID: 22908625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic changes during phytoremediation of perchlorate under different root-zone conditions.
    Nzengung VA; Penning H; O'Niell W
    Int J Phytoremediation; 2004; 6(1):63-83. PubMed ID: 15224776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands.
    Vymazal J; Svehla J; Kröpfelová L; Chrastný V
    Sci Total Environ; 2007 Jul; 380(1-3):154-62. PubMed ID: 17307232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of macrophyte species on microbial density and activity in constructed wetlands.
    Gagnon V; Chazarenc F; Comeau Y; Brisson J
    Water Sci Technol; 2007; 56(3):249-54. PubMed ID: 17802862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the diversity of root-associated bacteria in Phragmites australis and Typha angustifolia L. in artificial wetlands.
    Li YH; Zhu JN; Liu QF; Liu Y; Liu M; Liu L; Zhang Q
    World J Microbiol Biotechnol; 2013 Aug; 29(8):1499-508. PubMed ID: 23504190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Arbuscular Mycorrhiza (AM) on Tolerance of Cattail to Cd Stress in Aquatic Environment].
    Luo PC; Li H; Wang SG
    Huan Jing Ke Xue; 2016 Feb; 37(2):750-5. PubMed ID: 27363169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short- and long-term dynamics of nutrient removal in floating treatment wetlands.
    Garcia Chance LM; Van Brunt SC; Majsztrik JC; White SA
    Water Res; 2019 Aug; 159():153-163. PubMed ID: 31091480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH, Redox, and oxygen microprofiles in rhizosphere of bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater.
    Bezbaruah AN; Zhang TC
    Biotechnol Bioeng; 2004 Oct; 88(1):60-70. PubMed ID: 15384055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms.
    Picard CR; Fraser LH; Steer D
    Bioresour Technol; 2005 Jun; 96(9):1039-47. PubMed ID: 15668200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate.
    Brix H; Dyhr-Jensen K; Lorenzen B
    J Exp Bot; 2002 Dec; 53(379):2441-50. PubMed ID: 12432036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.