These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 34872350)

  • 1. A New Class of Cell Wall-Recycling l,d-Carboxypeptidase Determines β-Lactam Susceptibility and Morphogenesis in Acinetobacter baumannii.
    Dai Y; Pinedo V; Tang AY; Cava F; Geisinger E
    mBio; 2021 Dec; 12(6):e0278621. PubMed ID: 34872350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidoglycan Recycling Promotes Outer Membrane Integrity and Carbapenem Tolerance in Acinetobacter baumannii.
    Islam N; Kazi MI; Kang KN; Biboy J; Gray J; Ahmed F; Schargel RD; Boutte CC; Dörr T; Vollmer W; Boll JM
    mBio; 2022 Jun; 13(3):e0100122. PubMed ID: 35638738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acinetobacter baumannii Can Survive with an Outer Membrane Lacking Lipooligosaccharide Due to Structural Support from Elongasome Peptidoglycan Synthesis.
    Simpson BW; Nieckarz M; Pinedo V; McLean AB; Cava F; Trent MS
    mBio; 2021 Dec; 12(6):e0309921. PubMed ID: 34844428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Inactivation of d,d-Transpeptidases of Acinetobacter baumannii on Bacterial Growth and Susceptibility to β-Lactam Antibiotics.
    Toth M; Lee M; Stewart NK; Vakulenko SB
    Antimicrob Agents Chemother; 2022 Jan; 66(1):e0172921. PubMed ID: 34780270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OXA-23 β-Lactamase Overexpression in Acinetobacter baumannii Drives Physiological Changes Resulting in New Genetic Vulnerabilities.
    Colquhoun JM; Farokhyfar M; Hutcheson AR; Anderson A; Bethel CR; Bonomo RA; Clarke AJ; Rather PN
    mBio; 2021 Dec; 12(6):e0313721. PubMed ID: 34872351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in Acinetobacter baumannii.
    Gil-Marqués ML; Moreno-Martínez P; Costas C; Pachón J; Blázquez J; McConnell MJ
    J Antimicrob Chemother; 2018 Nov; 73(11):2960-2968. PubMed ID: 30124902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Septal Class A Penicillin-Binding Protein Activity and ld-Transpeptidases Mediate Selection of Colistin-Resistant Lipooligosaccharide-Deficient Acinetobacter baumannii.
    Kang KN; Kazi MI; Biboy J; Gray J; Bovermann H; Ausman J; Boutte CC; Vollmer W; Boll JM
    mBio; 2021 Jan; 12(1):. PubMed ID: 33402533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The beta-lactam-sensitive D,D-carboxypeptidase activity of Pbp4 controls the L,D and D,D transpeptidation pathways in Corynebacterium jeikeium.
    Lavollay M; Arthur M; Fourgeaud M; Dubost L; Marie A; Riegel P; Gutmann L; Mainardi JL
    Mol Microbiol; 2009 Nov; 74(3):650-61. PubMed ID: 19807868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergism of imipenem with fosfomycin associated with the active cell wall recycling and heteroresistance in Acinetobacter calcoaceticus-baumannii complex.
    Singkham-In U; Chatsuwan T
    Sci Rep; 2022 Jan; 12(1):230. PubMed ID: 34997148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PBP1A Directly Interacts with the Divisome Complex to Promote Septal Peptidoglycan Synthesis in Acinetobacter baumannii.
    Kang KN; Boll JM
    J Bacteriol; 2022 Dec; 204(12):e0023922. PubMed ID: 36317921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global regulatory system links virulence and antibiotic resistance to envelope homeostasis in Acinetobacter baumannii.
    Geisinger E; Mortman NJ; Vargas-Cuebas G; Tai AK; Isberg RR
    PLoS Pathog; 2018 May; 14(5):e1007030. PubMed ID: 29795704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope.
    Geisinger E; Mortman NJ; Dai Y; Cokol M; Syal S; Farinha A; Fisher DG; Tang AY; Lazinski DW; Wood S; Anthony J; van Opijnen T; Isberg RR
    Nat Commun; 2020 Sep; 11(1):4522. PubMed ID: 32908144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic synergy between
    Noel HR; Keerthi S; Ren X; Winkelman JD; Troutman JM; Palmer LD
    mBio; 2024 Mar; 15(3):e0280423. PubMed ID: 38364179
    [No Abstract]   [Full Text] [Related]  

  • 14. Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance.
    Park SH; Choi U; Ryu SH; Lee HB; Lee JW; Lee CR
    Microbiol Spectr; 2022 Aug; 10(4):e0173422. PubMed ID: 35758683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Acinetobacter baumannii, Zinc-Regulated Peptidase Maintains Cell Wall Integrity during Immune-Mediated Nutrient Sequestration.
    Lonergan ZR; Nairn BL; Wang J; Hsu YP; Hesse LE; Beavers WN; Chazin WJ; Trinidad JC; VanNieuwenhze MS; Giedroc DP; Skaar EP
    Cell Rep; 2019 Feb; 26(8):2009-2018.e6. PubMed ID: 30784584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-walled spherical
    Zou J; Kou SH; Xie R; VanNieuwenhze MS; Qu J; Peng B; Zheng J
    Emerg Microbes Infect; 2020 Dec; 9(1):1149-1159. PubMed ID: 32419626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved zinc-binding site in
    Micelli C; Dai Y; Raustad N; Isberg RR; Dowson CG; Lloyd AJ; Geisinger E; Crow A; Roper DI
    Proc Natl Acad Sci U S A; 2023 Feb; 120(8):e2215237120. PubMed ID: 36787358
    [No Abstract]   [Full Text] [Related]  

  • 18. Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii.
    Gebhardt MJ; Gallagher LA; Jacobson RK; Usacheva EA; Peterson LR; Zurawski DV; Shuman HA
    mBio; 2015 Nov; 6(6):e01660-15. PubMed ID: 26556274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations Decreasing Intrinsic β-Lactam Resistance Are Linked to Cell Division in the Nosocomial Pathogen Acinetobacter baumannii.
    Knight D; Dimitrova DD; Rudin SD; Bonomo RA; Rather PN
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3751-8. PubMed ID: 27067318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lytic transglycosylase contributes to the survival of lipooligosaccharide-deficient, colistin-dependent Acinetobacter baumannii.
    Lee JY; Lee H; Park M; Cha CJ; Shin D; Ko KS
    Clin Microbiol Infect; 2019 Sep; 25(9):1156.e1-1156.e7. PubMed ID: 30790686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.