These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

543 related articles for article (PubMed ID: 34872497)

  • 1. Comparative transcriptomic and metabolic profiling provides insight into the mechanism by which the autophagy inhibitor 3-MA enhances salt stress sensitivity in wheat seedlings.
    Yue J; Wang Y; Jiao J; Wang H
    BMC Plant Biol; 2021 Dec; 21(1):577. PubMed ID: 34872497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Analysis of Short-Term Salt Stress Response in Watermelon Seedlings.
    Song Q; Joshi M; Joshi V
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32839408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silencing of ATG2 and ATG7 promotes programmed cell death in wheat via inhibition of autophagy under salt stress.
    Yue JY; Wang YJ; Jiao JL; Wang HZ
    Ecotoxicol Environ Saf; 2021 Dec; 225():112761. PubMed ID: 34509161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide alleviates salinity-induced damage through enhancing proline accumulation in wheat seedlings.
    Liu L; Huang L; Lin X; Sun C
    Plant Cell Rep; 2020 May; 39(5):567-575. PubMed ID: 32025801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CsGPA1-CsAQPs module is essential for salt tolerance of cucumber seedlings.
    Yan Y; Sun M; Li Y; Wang J; He C; Yu X
    Plant Cell Rep; 2020 Oct; 39(10):1301-1316. PubMed ID: 32648011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BR regulates wheat root salt tolerance by maintaining ROS homeostasis.
    Hou L; Liu Z; Zhang D; Liu S; Chen Z; Wu Q; Shang Z; Wang J; Wang J
    Planta; 2024 May; 260(1):5. PubMed ID: 38777878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ameliorative impacts of gamma-aminobutyric acid (GABA) on seedling growth, physiological biomarkers, and gene expression in eight wheat (Triticum aestivum L.) cultivars under salt stress.
    Badr A; Basuoni MM; Ibrahim M; Salama YE; Abd-Ellatif S; Abdel Razek ES; Amer KE; Ibrahim AA; Zayed EM
    BMC Plant Biol; 2024 Jun; 24(1):605. PubMed ID: 38926865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na
    Wu X; Jia Q; Ji S; Gong B; Li J; Lü G; Gao H
    BMC Plant Biol; 2020 Oct; 20(1):465. PubMed ID: 33036565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana.
    Zhang M; Zhang GQ; Kang HH; Zhou SM; Wang W
    Plant Cell Physiol; 2017 Oct; 58(10):1673-1688. PubMed ID: 29016965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tea polyphenols on the activities of antioxidant enzymes and the expression of related gene in the leaves of wheat seedlings under salt stress.
    Zhang Y; Li G; Si L; Liu N; Gao T; Yang Y
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65447-65461. PubMed ID: 34319523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress.
    Wang J; Qin Q; Pan J; Sun L; Sun Y; Xue Y; Song K
    Sci Rep; 2019 Dec; 9(1):19802. PubMed ID: 31875036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress.
    Tan X; Long W; Zeng L; Ding X; Cheng Y; Zhang X; Zou X
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress.
    Chen JF; Liu Y; Zhang TY; Zhou ZF; Huang JY; Zhou T; Hua YP
    BMC Plant Biol; 2022 Oct; 22(1):502. PubMed ID: 36289462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of Zygophyllum spp.
    Wang J; Jiang X; Zhao C; Fang Z; Jiao P
    BMC Plant Biol; 2020 Jan; 20(1):9. PubMed ID: 31906853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat.
    Zhao Y; Zhang F; Mickan B; Wang D; Wang W
    Plant Cell Rep; 2022 Jan; 41(1):95-118. PubMed ID: 34546426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.).
    Cui G; Sun F; Gao X; Xie K; Zhang C; Liu S; Xi Y
    Planta; 2018 Jul; 248(1):69-87. PubMed ID: 29564630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L.
    Zhu YX; Xu XB; Hu YH; Han WH; Yin JL; Li HL; Gong HJ
    Plant Cell Rep; 2015 Sep; 34(9):1629-46. PubMed ID: 26021845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing salt stress tolerance in wheat (Triticum aestivum) seedlings: insights from trehalose and mannitol.
    Alhudhaibi AM; Ibrahim MAR; Abd-Elaziz SMS; Farag HRM; Elsayed SM; Ibrahim HA; Hossain AS; Alharbi BM; Haouala F; Elkelish A; Srour HAM
    BMC Plant Biol; 2024 May; 24(1):472. PubMed ID: 38811894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.
    Qiu Z; Guo J; Zhu A; Zhang L; Zhang M
    Ecotoxicol Environ Saf; 2014 Jun; 104():202-8. PubMed ID: 24726929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.