These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 34872799)

  • 21. Life cycle assessment and economic analysis of the electric motorcycle in the city of Barcelona and the impact on air pollution.
    Carranza G; Do Nascimiento M; Fanals J; Febrer J; Valderrama C
    Sci Total Environ; 2022 May; 821():153419. PubMed ID: 35092764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area.
    Gai Y; Minet L; Posen ID; Smargiassi A; Tétreault LF; Hatzopoulou M
    Environ Pollut; 2020 Oct; 265(Pt A):114983. PubMed ID: 32590240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research on Spent LiFePO
    Zhu L; Chen M
    Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33261047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of regional temperature on the adoption of electric vehicles: an empirical study based on 20 provinces in China.
    Li X; Zhao X; Xue D; Tian Q
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11443-11457. PubMed ID: 36094712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Economic feasibility analysis for an electric public transportation system: Two cases of study in medium sized cities in Mexico.
    Sánchez JT; Del Río JA; Sánchez A
    PLoS One; 2022; 17(8):e0272363. PubMed ID: 35925938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential impacts of electric vehicles on air quality in Taiwan.
    Li N; Chen JP; Tsai IC; He Q; Chi SY; Lin YC; Fu TM
    Sci Total Environ; 2016 Oct; 566-567():919-928. PubMed ID: 27285533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmental Justice Aspects of Exposure to PM2.5 Emissions from Electric Vehicle Use in China.
    Ji S; Cherry CR; Zhou W; Sawhney R; Wu Y; Cai S; Wang S; Marshall JD
    Environ Sci Technol; 2015 Dec; 49(24):13912-20. PubMed ID: 26509330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles.
    Moro A; Lonza L
    Transp Res D Transp Environ; 2018 Oct; 64():5-14. PubMed ID: 30740029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles.
    Shen W; Han W; Wallington TJ
    Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon emission potential of new energy vehicles under different electricity structures.
    Liu B; Zhao Y; Liang X
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):125492-125509. PubMed ID: 37999849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coordinated EV adoption: double-digit reductions in emissions and fuel use for $40/vehicle-year.
    Choi DG; Kreikebaum F; Thomas VM; Divan D
    Environ Sci Technol; 2013 Sep; 47(18):10703-7. PubMed ID: 23875888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Life cycle assessment and carbon reduction potential prediction of electric vehicles batteries.
    Wu W; Cong N; Zhang X; Yue Q; Zhang M
    Sci Total Environ; 2023 Dec; 903():166620. PubMed ID: 37643704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?
    Wallington TJ; Grahn M; Anderson JE; Mueller SA; Williander MI; Lindgren K
    Environ Sci Technol; 2010 Apr; 44(7):2702-8. PubMed ID: 20187632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.
    Michalek JJ; Chester M; Jaramillo P; Samaras C; Shiau CS; Lave LB
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16554-8. PubMed ID: 21949359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis.
    Zheng Y; Li S; Xu S
    PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fuel cell-based electric vehicles technologies and challenges.
    Selmi T; Khadhraoui A; Cherif A
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78121-78131. PubMed ID: 36173525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.