These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34873197)

  • 1. BioCPPNet: automatic bioacoustic source separation with deep neural networks.
    Bermant PC
    Sci Rep; 2021 Dec; 11(1):23502. PubMed ID: 34873197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture.
    Bravo Sanchez FJ; Hossain MR; English NB; Moore ST
    Sci Rep; 2021 Aug; 11(1):15733. PubMed ID: 34344970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust sound event detection in bioacoustic sensor networks.
    Lostanlen V; Salamon J; Farnsworth A; Kelling S; Bello JP
    PLoS One; 2019; 14(10):e0214168. PubMed ID: 31647815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of overlapping sources in bioacoustic mixtures.
    Izadi MR; Stevenson R; Kloepper LN
    J Acoust Soc Am; 2020 Mar; 147(3):1688. PubMed ID: 32237826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open Set Bioacoustic Signal Classification based on Class Anchor Clustering with Closed Set Unknown Bioacoustic Signals.
    Ko K; Lee B; Kim D; Hong J; Ko H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of acoustically similar conspecific and heterospecific vocalizations by black-capped chickadees (Poecile atricapillus).
    Hahn AH; Campbell KA; Congdon JV; Hoang J; McMillan N; Scully EN; Yong JJH; Elie JE; Sturdy CB
    Anim Cogn; 2017 Jul; 20(4):639-654. PubMed ID: 28393311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated categorization of bioacoustic signals: avoiding perceptual pitfalls.
    Deecke VB; Janik VM
    J Acoust Soc Am; 2006 Jan; 119(1):645-53. PubMed ID: 16454318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep audio embeddings for vocalisation clustering.
    Best P; Paris S; Glotin H; Marxer R
    PLoS One; 2023; 18(7):e0283396. PubMed ID: 37428759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ANIMAL-SPOT enables animal-independent signal detection and classification using deep learning.
    Bergler C; Smeele SQ; Tyndel SA; Barnhill A; Ortiz ST; Kalan AK; Cheng RX; Brinkløv S; Osiecka AN; Tougaard J; Jakobsen F; Wahlberg M; Nöth E; Maier A; Klump BC
    Sci Rep; 2022 Dec; 12(1):21966. PubMed ID: 36535999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global birdsong embeddings enable superior transfer learning for bioacoustic classification.
    Ghani B; Denton T; Kahl S; Klinck H
    Sci Rep; 2023 Dec; 13(1):22876. PubMed ID: 38129622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated detection of frog calls and choruses by pulse repetition rate.
    Lapp S; Wu T; Richards-Zawacki C; Voyles J; Rodriguez KM; Shamon H; Kitzes J
    Conserv Biol; 2021 Oct; 35(5):1659-1668. PubMed ID: 33586273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic projectors make covert bioacoustic chirplet signals discoverable.
    Casari P; Neasham J; Gubnitsky G; Eccher D; Diamant R
    Sci Rep; 2023 Feb; 13(1):2591. PubMed ID: 36788296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separating overlapping bat calls with a bi-directional long short-term memory network.
    Zhang K; Liu T; Song S; Zhao X; Sun S; Metzner W; Feng J; Liu Y
    Integr Zool; 2022 Sep; 17(5):741-751. PubMed ID: 33881210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic model adaptation for ortolan bunting (Emberiza hortulana L.) song-type classification.
    Tao J; Johnson MT; Osiejuk TS
    J Acoust Soc Am; 2008 Mar; 123(3):1582-90. PubMed ID: 18345846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic fish sounds classification.
    Malfante M; Mars JI; Dalla Mura M; Gervaise C
    J Acoust Soc Am; 2018 May; 143(5):2834. PubMed ID: 29857733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Fourier descriptors for characterizing amplitude-modulated waveform shapes.
    Pinkowski B
    J Acoust Soc Am; 1994 Jun; 95(6):3419-23. PubMed ID: 8046134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottlenose dolphins can use learned vocal labels to address each other.
    King SL; Janik VM
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13216-21. PubMed ID: 23878217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition.
    Chesmore ED; Ohya E
    Bull Entomol Res; 2004 Aug; 94(4):319-30. PubMed ID: 15301697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of Artificial Neural Networks to classify primate vocalizations: A pilot study on black lemurs.
    Pozzi L; Gamba M; Giacoma C
    Am J Primatol; 2010 Apr; 72(4):337-48. PubMed ID: 20034021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speaker separation in realistic noise environments with applications to a cognitively-controlled hearing aid.
    Borgström BJ; Brandstein MS; Ciccarelli GA; Quatieri TF; Smalt CJ
    Neural Netw; 2021 Aug; 140():136-147. PubMed ID: 33765529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.