These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 34873292)

  • 1. Species- and site-specific genome editing in complex bacterial communities.
    Rubin BE; Diamond S; Cress BF; Crits-Christoph A; Lou YC; Borges AL; Shivram H; He C; Xu M; Zhou Z; Smith SJ; Rovinsky R; Smock DCJ; Tang K; Owens TK; Krishnappa N; Sachdeva R; Barrangou R; Deutschbauer AM; Banfield JF; Doudna JA
    Nat Microbiol; 2022 Jan; 7(1):34-47. PubMed ID: 34873292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes.
    Liu Z; Liu J; Yang Z; Zhu L; Zhu Z; Huang H; Jiang L
    Biotechnol Adv; 2023 Nov; 68():108241. PubMed ID: 37633620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria.
    Hidalgo-Cantabrana C; Goh YJ; Barrangou R
    J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology.
    Ishino Y; Krupovic M; Forterre P
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29358495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering.
    Liu Q; Zhang H; Huang X
    FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms.
    Mendoza BJ; Trinh CT
    Bioinformatics; 2018 Jan; 34(1):16-23. PubMed ID: 28968798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of Microbial Diversity to Discover Novel Molecular Technologies.
    Zhang F
    Keio J Med; 2019; 68(1):26. PubMed ID: 30905885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.
    Lo TW; Pickle CS; Lin S; Ralston EJ; Gurling M; Schartner CM; Bian Q; Doudna JA; Meyer BJ
    Genetics; 2013 Oct; 195(2):331-48. PubMed ID: 23934893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations.
    Wang J; Zhang C; Feng B
    J Cell Mol Med; 2020 Mar; 24(6):3256-3270. PubMed ID: 32037739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering.
    Arazoe T; Kondo A; Nishida K
    Biotechnol J; 2018 Sep; 13(9):e1700596. PubMed ID: 29862665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO
    Li J; Zhang L; Xu Q; Zhang W; Li Z; Chen L; Dong X
    Microbiol Spectr; 2022 Aug; 10(4):e0116522. PubMed ID: 35766512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Design of Guide RNA for CRISPR/Cas Plant Genome Editing].
    Gerashchenkov GA; Rozhnova NA; Kuluev BR; Kiryanova OY; Gumerova GR; Knyazev AV; Vershinina ZR; Mikhailova EV; Chemeris DA; Matniyazov RT; Baimiev AK; Gubaidullin IM; Baimiev AK; Chemeris AV
    Mol Biol (Mosk); 2020; 54(1):29-50. PubMed ID: 32163387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of CRISPR guide RNAs to enable strain-specific control of microbial consortia.
    Rottinghaus AG; Vo S; Moon TS
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2213154120. PubMed ID: 36574681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed conditional genome editing with Cas12a in
    Port F; Starostecka M; Boutros M
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22890-22899. PubMed ID: 32843348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans.
    Paix A; Folkmann A; Seydoux G
    Methods; 2017 May; 121-122():86-93. PubMed ID: 28392263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposon-Associated CRISPR-Cas System: A Powerful DNA Insertion Tool.
    Ma W; Xu YS; Sun XM; Huang H
    Trends Microbiol; 2021 Jul; 29(7):565-568. PubMed ID: 33612399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex genome editing of microorganisms using CRISPR-Cas.
    Adiego-PĂ©rez B; Randazzo P; Daran JM; Verwaal R; Roubos JA; Daran-Lapujade P; van der Oost J
    FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31087001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finally, Archaea Get Their CRISPR-Cas Toolbox.
    Gophna U; Allers T; Marchfelder A
    Trends Microbiol; 2017 Jun; 25(6):430-432. PubMed ID: 28391963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene editing and genetic engineering approaches for advanced probiotics: A review.
    Yadav R; Kumar V; Baweja M; Shukla P
    Crit Rev Food Sci Nutr; 2018 Jul; 58(10):1735-1746. PubMed ID: 28071925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and evolution of class 2 CRISPR-Cas systems.
    Shmakov S; Smargon A; Scott D; Cox D; Pyzocha N; Yan W; Abudayyeh OO; Gootenberg JS; Makarova KS; Wolf YI; Severinov K; Zhang F; Koonin EV
    Nat Rev Microbiol; 2017 Mar; 15(3):169-182. PubMed ID: 28111461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.