These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34873497)

  • 1. A Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images via CMOS Sensor and Recurrent Neural Networks.
    Jing M; Mclaughlin D; Mcnamee SE; Raj S; Namee BM; Steele D; Finlay D; Mclaughlin J
    IEEE J Transl Eng Health Med; 2021; 9():1900415. PubMed ID: 34873497
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel patches-selection method for the classification of point-of-care biosensing lateral flow assays with cardiac biomarkers.
    Fairooz T; McNamee SE; Finlay D; Ng KY; McLaughlin J
    Biosens Bioelectron; 2023 Mar; 223():115016. PubMed ID: 36586151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyte Quantity Detection from Lateral Flow Assay Using a Smartphone.
    Foysal KH; Seo SE; Kim MJ; Kwon OS; Chong JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31694281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Component Dual-Readout Aggregation-Induced Emission Nanobeads for Qualitative and Quantitative Detection of C-Reactive Protein at the Point of Care.
    Fan L; Yan W; Chen Q; Tan F; Tang Y; Han H; Yu R; Xie N; Gao S; Chen W; Chen Z; Zhang P
    Anal Chem; 2024 Jan; 96(1):401-408. PubMed ID: 38134291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-line lateral flow assay strip for the measurement of C-reactive protein covering a broad physiological concentration range in human sera.
    Oh YK; Joung HA; Han HS; Suk HJ; Kim MG
    Biosens Bioelectron; 2014 Nov; 61():285-9. PubMed ID: 24906087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and optimization of thermal contrast amplification lateral flow immunoassays for ultrasensitive HIV p24 protein detection.
    Zhan L; Granade T; Liu Y; Wei X; Youngpairoj A; Sullivan V; Johnson J; Bischof J
    Microsyst Nanoeng; 2020; 6():54. PubMed ID: 34567665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point-of-Care Monitoring of Respiratory Diseases Using Lateral Flow Assay and CMOS Camera Reader.
    Raj S; McCafferty D; Lubrasky G; Johnston S; Skillen KL; McLaughlin J
    IEEE J Transl Eng Health Med; 2022; 10():2800208. PubMed ID: 35992371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks.
    Kutlu H; Avcı E
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31035406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining grasp selection from arm trajectories via deep learning to enable functional hand movement in tetraplegia.
    Bhagat N; King K; Ramdeo R; Stein A; Bouton C
    Bioelectron Med; 2020; 6():17. PubMed ID: 32864392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image based quantitative reader for Lateral flow immunofluorescence assay.
    Chowdhury KB; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1223-6. PubMed ID: 26736487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes.
    Mekruksavanich S; Jitpattanakul A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ImQuant - An image based fluorescence reader for quantitative lateral flow immunoassays.
    Chowdhury KB; Joseph J; Vasan JK; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5152-5155. PubMed ID: 28325018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lock-In Pixel CMOS Image Sensor for Time-Resolved Fluorescence Readout of Lateral-Flow Assays.
    Hofmann A; Saft B; Reich P; Grabmann M; Glaser G; Trubenbach M; Rolapp A; Reinhard M; Scholz F; Schafer E
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):535-544. PubMed ID: 35862324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay.
    Chiu RY; Thach AV; Wu CM; Wu BM; Kamei DT
    PLoS One; 2015; 10(11):e0142654. PubMed ID: 26556593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable local flow attention for multi-step traffic flow prediction.
    Huang X; Zhang B; Feng S; Ye Y; Li X
    Neural Netw; 2023 Apr; 161():25-38. PubMed ID: 36735998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays.
    You DJ; Park TS; Yoon JY
    Biosens Bioelectron; 2013 Feb; 40(1):180-5. PubMed ID: 22863118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
    Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F
    Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.