These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34873831)
1. A hybrid approach based on deep learning and level set formulation for liver segmentation in CT images. Gong Z; Guo C; Guo W; Zhao D; Tan W; Zhou W; Zhang G J Appl Clin Med Phys; 2022 Jan; 23(1):e13482. PubMed ID: 34873831 [TBL] [Abstract][Full Text] [Related]
2. Automatic liver segmentation by integrating fully convolutional networks into active contour models. Guo X; Schwartz LH; Zhao B Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688 [TBL] [Abstract][Full Text] [Related]
3. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks. Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697 [TBL] [Abstract][Full Text] [Related]
4. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
5. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
6. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026 [TBL] [Abstract][Full Text] [Related]
7. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Budak Ü; Guo Y; Tanyildizi E; Şengür A Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758 [TBL] [Abstract][Full Text] [Related]
8. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Qin W; Wu J; Han F; Yuan Y; Zhao W; Ibragimov B; Gu J; Xing L Phys Med Biol; 2018 May; 63(9):095017. PubMed ID: 29633960 [TBL] [Abstract][Full Text] [Related]
9. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105 [TBL] [Abstract][Full Text] [Related]
10. Three-stage segmentation of lung region from CT images using deep neural networks. Osadebey M; Andersen HK; Waaler D; Fossaa K; Martinsen ACT; Pedersen M BMC Med Imaging; 2021 Jul; 21(1):112. PubMed ID: 34266391 [TBL] [Abstract][Full Text] [Related]
11. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
12. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation. Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898 [TBL] [Abstract][Full Text] [Related]
13. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT. Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282 [TBL] [Abstract][Full Text] [Related]
14. Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour. Jin R; Wang M; Xu L; Lu J; Song E; Ma G Med Phys; 2023 Apr; 50(4):2100-2120. PubMed ID: 36413182 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
16. Deep learning and level set approach for liver and tumor segmentation from CT scans. Alirr OI J Appl Clin Med Phys; 2020 Oct; 21(10):200-209. PubMed ID: 33113290 [TBL] [Abstract][Full Text] [Related]
17. Abdomen tissues segmentation from computed tomography images using deep learning and level set methods. Gong Z; Song J; Guo W; Ju R; Zhao D; Tan W; Zhou W; Zhang G Math Biosci Eng; 2022 Sep; 19(12):14074-14085. PubMed ID: 36654080 [TBL] [Abstract][Full Text] [Related]
18. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Xu X; Zhou F; Liu B Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905 [TBL] [Abstract][Full Text] [Related]
19. HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images. Kushnure DT; Talbar SN Comput Methods Programs Biomed; 2022 Jan; 213():106501. PubMed ID: 34752959 [TBL] [Abstract][Full Text] [Related]
20. Fast interactive medical image segmentation with weakly supervised deep learning method. Girum KB; Créhange G; Hussain R; Lalande A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]