These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34874370)

  • 1. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications.
    Lafuente-Gómez N; Latorre A; Milán-Rois P; Rodriguez Diaz C; Somoza Á
    Chem Commun (Camb); 2021 Dec; 57(100):13662-13677. PubMed ID: 34874370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release.
    Tang Q; Yu B; Gao L; Cong H; Song N; Lu C
    Curr Med Chem; 2018; 25(16):1837-1866. PubMed ID: 29332566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Smart Dual-Stimuli Responsive Nanoparticles for Controlled Anti-Tumor Drug Release and Cancer Therapy.
    Wu F; Qiu F; Wai-Keong SA; Diao Y
    Anticancer Agents Med Chem; 2021; 21(10):1202-1215. PubMed ID: 32972353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-responsive Carriers for Controlled Intracellular Drug Release.
    Sheng Y; Hu J; Shi J; Lee LJ
    Curr Med Chem; 2019; 26(13):2377-2388. PubMed ID: 28875840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in intelligent-responsive nanocarriers for cancer therapy.
    Tian M; Xin X; Wu R; Guan W; Zhou W
    Pharmacol Res; 2022 Apr; 178():106184. PubMed ID: 35301111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive nanoscale drug delivery systems for cancer therapy.
    Li L; Yang WW; Xu DG
    J Drug Target; 2019 Apr; 27(4):423-433. PubMed ID: 30173577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles.
    Baek S; Singh RK; Khanal D; Patel KD; Lee EJ; Leong KW; Chrzanowski W; Kim HW
    Nanoscale; 2015 Sep; 7(34):14191-216. PubMed ID: 26260245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Stimuli-Responsive Release Function Drug Delivery Systems for Tumor Treatment.
    Ding C; Tong L; Feng J; Fu J
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27999414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal stimuli-responsive nanocarriers for controlled anti-cancer drug release: a review.
    Shaik BB; Katari NK; Jonnalagadda SB
    Ther Deliv; 2023 Sep; 14(9):595-613. PubMed ID: 37877308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies To Design and Synthesize Polymer-Based Stimuli-Responsive Drug-Delivery Nanosystems.
    Qin X; Li Y
    Chembiochem; 2020 May; 21(9):1236-1253. PubMed ID: 31889379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversibly-regulated drug release using poly(tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy.
    Chen C; Ma T; Tang W; Wang X; Wang Y; Zhuang J; Zhu Y; Wang P
    Nanoscale Horiz; 2020 Jun; 5(6):986-998. PubMed ID: 32322871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemo-drug Controlled-release Strategies of Nanocarrier in the Development of Cancer Therapeutics.
    Liu Y; Ou H; Pei X; Jiang B; Ma Y; Liu N; Wen C; Peng C; Hu X
    Curr Med Chem; 2021; 28(31):6307-6322. PubMed ID: 32503398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy.
    Zhi D; Yang T; Yang J; Fu S; Zhang S
    Acta Biomater; 2020 Jan; 102():13-34. PubMed ID: 31759124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative nano-carriers in anticancer drug delivery-a comprehensive review.
    Dong P; Rakesh KP; Manukumar HM; Mohammed YHE; Karthik CS; Sumathi S; Mallu P; Qin HL
    Bioorg Chem; 2019 Apr; 85():325-336. PubMed ID: 30658232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of hybrid triple-responsive κ-carrageenan-based nanospheres for controlled drug delivery.
    Geyik G; Işıklan N
    Int J Biol Macromol; 2021 Dec; 192():701-715. PubMed ID: 34637816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical methodology for developing nanomaterials designed for magnetically-guided delivery of platinum anticancer drugs.
    Timerbaev AR
    Talanta; 2022 Jun; 243():123371. PubMed ID: 35287017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.
    van Elk M; Murphy BP; Eufrásio-da-Silva T; O'Reilly DP; Vermonden T; Hennink WE; Duffy GP; Ruiz-Hernández E
    Int J Pharm; 2016 Dec; 515(1-2):132-164. PubMed ID: 27725268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design and facile fabrication of biocompatible triple responsive dendrimeric nanocages for targeted drug delivery.
    Zhong D; Wu H; Wu Y; Li Y; Xu X; Yang J; Gu Z
    Nanoscale; 2019 Aug; 11(32):15091-15103. PubMed ID: 31385582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.