BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34874715)

  • 1. Significantly Improving the Thermostability and Catalytic Efficiency of
    Wang X; Du J; Zhao B; Wang H; Rao S; Du G; Zhou J; Chen J; Liu S
    J Agric Food Chem; 2021 Dec; 69(50):15268-15278. PubMed ID: 34874715
    [No Abstract]   [Full Text] [Related]  

  • 2. Enhanced Thermostability and Catalytic Activity of
    Yang P; Wang X; Ye J; Rao S; Zhou J; Du G; Liu S
    J Agric Food Chem; 2023 Apr; 71(16):6366-6375. PubMed ID: 37039372
    [No Abstract]   [Full Text] [Related]  

  • 3. Active secretion of a thermostable transglutaminase variant in Escherichia coli.
    Wang X; Zhao B; Du J; Xu Y; Zhu X; Zhou J; Rao S; Du G; Chen J; Liu S
    Microb Cell Fact; 2022 Apr; 21(1):74. PubMed ID: 35488338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased thermostability of microbial transglutaminase by combination of several hot spots evolved by random and saturation mutagenesis.
    Buettner K; Hertel TC; Pietzsch M
    Amino Acids; 2012 Feb; 42(2-3):987-96. PubMed ID: 21863232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Production of a Thermostable Mutant of Transglutaminase by
    Ye J; Yang P; Zhou J; Du G; Liu S
    J Agric Food Chem; 2024 Feb; 72(8):4207-4216. PubMed ID: 38354706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic activity and thermoresistance of improved microbial transglutaminase variants.
    Böhme B; Moritz B; Wendler J; Hertel TC; Ihling C; Brandt W; Pietzsch M
    Amino Acids; 2020 Feb; 52(2):313-326. PubMed ID: 31350615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the activity and thermostability of microbial transglutaminase by multiple-site mutagenesis.
    Mu D; Lu J; Shu C; Li H; Li X; Cai J; Luo S; Yang P; Jiang S; Zheng Z
    Biosci Biotechnol Biochem; 2018 Jan; 82(1):106-109. PubMed ID: 29198166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the thermostability of transglutaminase from Streptomyces mobaraensis based on the rational design of a disulfide bond.
    Wang H; Chen H; Li Q; Yu F; Yan Y; Liu S; Tian J; Tan J
    Protein Expr Purif; 2022 Aug; 195-196():106079. PubMed ID: 35272012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction, expression, purification, characterization, and structural analysis of microbial transglutaminase variants.
    Song X; Sheng H; Zhou Y; Yu Y; He Y; Wang Z
    Biotechnol Appl Biochem; 2022 Dec; 69(6):2486-2495. PubMed ID: 34894362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of introducing a disulfide bridge on the thermostability of microbial transglutaminase from Streptomyces mobaraensis.
    Yokoyama K; Ogaya D; Utsumi H; Suzuki M; Kashiwagi T; Suzuki E; Taguchi S
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2737-2745. PubMed ID: 33738551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random mutagenesis of a recombinant microbial transglutaminase for the generation of thermostable and heat-sensitive variants.
    Marx CK; Hertel TC; Pietzsch M
    J Biotechnol; 2008 Sep; 136(3-4):156-62. PubMed ID: 18634837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive expression of active microbial transglutaminase in Escherichia coli and comparative characterization to a known variant.
    Javitt G; Ben-Barak-Zelas Z; Jerabek-Willemsen M; Fishman A
    BMC Biotechnol; 2017 Feb; 17(1):23. PubMed ID: 28245818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational design of a disulfide bridge increases the thermostability of microbial transglutaminase.
    Suzuki M; Date M; Kashiwagi T; Suzuki E; Yokoyama K
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4553-4562. PubMed ID: 35729274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Production of Transglutaminase in
    Yin X; Li Y; Zhou J; Rao S; Du G; Chen J; Liu S
    J Agric Food Chem; 2021 Mar; 69(10):3144-3153. PubMed ID: 33651593
    [No Abstract]   [Full Text] [Related]  

  • 15. Structure and organization of the human transglutaminase 3 gene: evolutionary relationship to the transglutaminase family.
    Kim IG; Lee SC; Lee JH; Yang JM; Chung SI; Steinert PM
    J Invest Dermatol; 1994 Aug; 103(2):137-42. PubMed ID: 7913719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2.
    Thangaraju K; Király R; Demény MA; András Mótyán J; Fuxreiter M; Fésüs L
    PLoS One; 2017; 12(3):e0172189. PubMed ID: 28248968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis.
    Yokoyama K; Utsumi H; Nakamura T; Ogaya D; Shimba N; Suzuki E; Taguchi S
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2087-96. PubMed ID: 20521043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation.
    Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X; Yang ST
    Enzyme Microb Technol; 2015 Sep; 77():54-60. PubMed ID: 26138400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel transglutaminase substrate from Streptomyces mobaraensis inhibiting papain-like cysteine proteases.
    Sarafeddinov A; Arif A; Peters A; Fuchsbauer HL
    J Microbiol Biotechnol; 2011 Jun; 21(6):617-26. PubMed ID: 21715969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed Evolution of a Bond-Forming Enzyme: Ultrahigh-Throughput Screening of Microbial Transglutaminase Using Yeast Surface Display.
    Deweid L; Neureiter L; Englert S; Schneider H; Deweid J; Yanakieva D; Sturm J; Bitsch S; Christmann A; Avrutina O; Fuchsbauer HL; Kolmar H
    Chemistry; 2018 Oct; 24(57):15195-15200. PubMed ID: 30047596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.