These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34874722)

  • 1. The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations.
    Cruz VL; Ramos J; Martinez-Salazar J; Montalban-Lopez M; Maqueda M
    J Chem Inf Model; 2021 Dec; 61(12):6066-6078. PubMed ID: 34874722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations.
    Kyriakou PK; Ekblad B; Kristiansen PE; Kaznessis YN
    Biochim Biophys Acta; 2016 Apr; 1858(4):824-35. PubMed ID: 26774214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toroidal pores formed by antimicrobial peptides show significant disorder.
    Sengupta D; Leontiadou H; Mark AE; Marrink SJ
    Biochim Biophys Acta; 2008 Oct; 1778(10):2308-17. PubMed ID: 18602889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Hammond K; Moffat J; Mulcahy C; Hoogenboom BW; Ryadnov MG
    Nanoscale; 2022 Jun; 14(24):8586-8593. PubMed ID: 35574721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding, folding and insertion of a β-hairpin peptide at a lipid bilayer surface: Influence of electrostatics and lipid tail packing.
    Reid KA; Davis CM; Dyer RB; Kindt JT
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):792-800. PubMed ID: 29291379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanism of Antimicrobial Small-Cationic Peptides from Coarse-Grained Simulations.
    Frigini EN; Porasso RD; Beke-Somfai T; López Cascales JJ; Enriz RD; Pantano S
    J Chem Inf Model; 2023 Nov; 63(21):6877-6889. PubMed ID: 37905818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane interactions and pore formation by the antimicrobial peptide protegrin.
    Lazaridis T; He Y; Prieto L
    Biophys J; 2013 Feb; 104(3):633-42. PubMed ID: 23442914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the mechanism of photosensitizer conjugation on membrane perturbation of antimicrobial peptide: A multiscale molecular simulation study.
    Liu Y; Song M; Wu J; Xie S; Zhou Y; Liu L; Huang M; Jiang L; Xu P; Li J
    Int J Biol Macromol; 2023 Aug; 247():125698. PubMed ID: 37414326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions.
    Arasteh S; Bagheri M
    Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association.
    Rice A; Wereszczynski J
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers.
    La Rocca P; Biggin PC; Tieleman DP; Sansom MS
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):185-200. PubMed ID: 10590308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins.
    Soliman W; Wang L; Bhattacharjee S; Kaur K
    J Med Chem; 2011 Apr; 54(7):2399-408. PubMed ID: 21388140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions.
    Rzepiela AJ; Sengupta D; Goga N; Marrink SJ
    Faraday Discuss; 2010; 144():431-43; discussion 445-81. PubMed ID: 20158042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer.
    Mukherjee S; Kar RK; Nanga RPR; Mroue KH; Ramamoorthy A; Bhunia A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19289-19299. PubMed ID: 28702543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the antimicrobial mechanism of action of β
    Koivuniemi A; Fallarero A; Bunker A
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183028. PubMed ID: 31376362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding.
    Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE
    Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.