BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34874805)

  • 1. Finding and understanding pedal misapplication crashes using a deep learning natural language model.
    Bareiss M; Smith C; Gabler HC
    Traffic Inj Prev; 2021; 22(sup1):S169-S172. PubMed ID: 34874805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric Bus Pedal Misapplication Detection Based on Phase Space Reconstruction Method.
    Lyu A; Li K; Zhang Y; Mu K; Luo W
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A semi-automated tool for identifying agricultural roadway crashes in crash narratives.
    Trueblood AB; Pant A; Kim J; Kum HC; Perez M; Das S; Shipp EM
    Traffic Inj Prev; 2019; 20(4):413-418. PubMed ID: 31074650
    [No Abstract]   [Full Text] [Related]  

  • 4. Analyzing relationships between latent topics in autonomous vehicle crash narratives and crash severity using natural language processing techniques and explainable XGBoost.
    Li P; Chen S; Yue L; Xu Y; Noyce DA
    Accid Anal Prev; 2024 Aug; 203():107605. PubMed ID: 38743983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedal Misapplication: Interruption Effects and Age-Related Differences.
    Hasegawa K; Kimura M; Takeda Y
    Hum Factors; 2021 Dec; 63(8):1342-1351. PubMed ID: 32613865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient mapping of crash risk at intersections with connected vehicle data and deep learning models.
    Hu J; Huang MC; Yu X
    Accid Anal Prev; 2020 Sep; 144():105665. PubMed ID: 32683130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of Single Vehicle Crashes with a Teen Driver in South Carolina, 2005-2008.
    Shults RA; Bergen G; Smith TJ; Cook L; Kindelberger J; West B
    Accid Anal Prev; 2019 Jan; 122():325-331. PubMed ID: 28947072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a meta-learning-based multi-modal deep learning algorithm for detection of peritoneal metastasis.
    Zhang H; Zhu X; Li B; Dai X; Bao X; Fu Q; Tong Z; Liu L; Zheng Y; Zhao P; Ye L; Chen Z; Fang W; Ruan L; Jin X
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1845-1853. PubMed ID: 35867303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crash narrative classification: Identifying agricultural crashes using machine learning with curated keywords.
    Kim J; Trueblood AB; Kum HC; Shipp EM
    Traffic Inj Prev; 2021; 22(1):74-78. PubMed ID: 33206551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning of motor vehicle accident categories from narrative data.
    Lehto MR; Sorock GS
    Methods Inf Med; 1996 Dec; 35(4-5):309-16. PubMed ID: 9019094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. exKidneyBERT: a language model for kidney transplant pathology reports and the crucial role of extended vocabularies.
    Yang T; Sucholutsky I; Jen KY; Schonlau M
    PeerJ Comput Sci; 2024; 10():e1888. PubMed ID: 38435545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting comprehensive clinical information for breast cancer using deep learning methods.
    Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q
    Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cars Gone Wild: The Major Contributor to Unintended Acceleration in Automobiles is Pedal Error.
    Schmidt RA; Young DE
    Front Psychol; 2010; 1():209. PubMed ID: 21833265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling severity of pedestrian-injury in pedestrian-vehicle crashes with latent class clustering and partial proportional odds model: A case study of North Carolina.
    Li Y; Fan WD
    Accid Anal Prev; 2019 Oct; 131():284-296. PubMed ID: 31351231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning based traffic crash severity prediction framework.
    Rahim MA; Hassan HM
    Accid Anal Prev; 2021 May; 154():106090. PubMed ID: 33740462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-vehicle crash severity outcome prediction and determinant extraction using tree-based and other non-parametric models.
    Yan X; He J; Zhang C; Liu Z; Qiao B; Zhang H
    Accid Anal Prev; 2021 Apr; 153():106034. PubMed ID: 33647597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering latent themes in traffic fatal crash narratives using text mining analytics and network topology.
    Kwayu KM; Kwigizile V; Lee K; Oh JS
    Accid Anal Prev; 2021 Feb; 150():105899. PubMed ID: 33285445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential occupant injury reduction in the U.S. vehicle fleet for lane departure warning-equipped vehicles in single-vehicle crashes.
    Kusano K; Gorman TI; Sherony R; Gabler HC
    Traffic Inj Prev; 2014; 15 Suppl 1():S157-64. PubMed ID: 25307382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial effects of graduated driver licensing on 16-year-old driver crashes in North Carolina.
    Foss RD; Feaganes JR; Rodgman EA
    JAMA; 2001 Oct; 286(13):1588-92. PubMed ID: 11585481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injury severity analysis of pedestrian and bicyclist trespassing crashes at non-crossings: A hybrid predictive text analytics and heterogeneity-based statistical modeling approach.
    Wali B; Khattak AJ; Ahmad N
    Accid Anal Prev; 2021 Feb; 150():105835. PubMed ID: 33310430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.