These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34874864)

  • 21. A Low-Power Fall Detector Balancing Sensitivity and False Alarm Rate.
    Wang C; Lu W; Redmond SJ; Stevens MC; Lord SR; Lovell NH
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1929-1937. PubMed ID: 29990072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of simple thresholds for accelerometry-based parameters for fall detection.
    Kangas M; Konttila A; Winblad I; Jämsä T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1367-70. PubMed ID: 18002218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor.
    Ejupi A; Galang C; Aziz O; Park EJ; Robinovitch S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2150-2153. PubMed ID: 29060322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitivity and specificity of fall detection in people aged 40 years and over.
    Kangas M; Vikman I; Wiklander J; Lindgren P; Nyberg L; Jämsä T
    Gait Posture; 2009 Jun; 29(4):571-4. PubMed ID: 19153043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cross-dataset deep learning-based classifier for people fall detection and identification.
    Delgado-Escaño R; Castro FM; Cózar JR; Marín-Jiménez MJ; Guil N; Casilari E
    Comput Methods Programs Biomed; 2020 Feb; 184():105265. PubMed ID: 31881399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Event-Centered Data Segmentation in Accelerometer-Based Fall Detection Algorithms.
    Šeketa G; Pavlaković L; Džaja D; Lacković I; Magjarević R
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Average Vertical Velocity and Difference in Altitude for Improving Automatic Fall Detection from Trunk Based Inertial and Barometric Pressure Measurements.
    Musngi MM; Aziz O; Zihajehzadeh S; Nazareth GC; Tae CG; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5146-5149. PubMed ID: 30441498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fall detection from a manual wheelchair: preliminary findings based on accelerometers using machine learning techniques.
    Abou L; Fliflet A; Presti P; Sosnoff JJ; Mahajan HP; Frechette ML; Rice LA
    Assist Technol; 2023 Nov; 35(6):523-531. PubMed ID: 36749900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detecting falls with wearable sensors using machine learning techniques.
    Özdemir AT; Barshan B
    Sensors (Basel); 2014 Jun; 14(6):10691-708. PubMed ID: 24945676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting falls with 3D range camera in ambient assisted living applications: a preliminary study.
    Leone A; Diraco G; Siciliano P
    Med Eng Phys; 2011 Jul; 33(6):770-81. PubMed ID: 21382737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring.
    Yu S; Chen H; Brown RA
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1847-1853. PubMed ID: 29990227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of accelerometer-based fall detection algorithms on real-world falls.
    Bagalà F; Becker C; Cappello A; Chiari L; Aminian K; Hausdorff JM; Zijlstra W; Klenk J
    PLoS One; 2012; 7(5):e37062. PubMed ID: 22615890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison and characterization of Android-based fall detection systems.
    Luque R; Casilari E; Morón MJ; Redondo G
    Sensors (Basel); 2014 Oct; 14(10):18543-74. PubMed ID: 25299953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wrist-Based Fall Detection: Towards Generalization across Datasets.
    Fula V; Moreno P
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of waist-worn tri-axial accelerometer based fall-detection algorithms using continuous unsupervised activities.
    Bourke AK; van de Ven P; Gamble M; O'Connor R; Murphy K; Bogan E; McQuade E; Finucane P; Olaighin G; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2782-5. PubMed ID: 21095967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of Public Datasets for Wearable Fall Detection Systems.
    Casilari E; Santoyo-Ramón JA; Cano-García JM
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28653991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Patient-Specific Single Sensor IoT-Based Wearable Fall Prediction and Detection System.
    Saadeh W; Butt SA; Altaf MAB
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):995-1003. PubMed ID: 30998473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A wearable system for pre-impact fall detection.
    Nyan MN; Tay FE; Murugasu E
    J Biomech; 2008 Dec; 41(16):3475-81. PubMed ID: 18996529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on the impact of the users' characteristics on the performance of wearable fall detection systems.
    Santoyo-Ramón JA; Casilari-Pérez E; Cano-García JM
    Sci Rep; 2021 Nov; 11(1):23011. PubMed ID: 34836975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems.
    Yuwono M; Moulton BD; Su SW; Celler BG; Nguyen HT
    Biomed Eng Online; 2012 Feb; 11():9. PubMed ID: 22336100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.