BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34875000)

  • 21. Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning.
    Kim Y; Jung YS; Park JH; Kim SJ; Cho YR
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. springD2A: capturing uncertainty in disease-drug association prediction with model integration.
    Wang W; Zhang X; Dai DQ
    Bioinformatics; 2022 Feb; 38(5):1353-1360. PubMed ID: 34864881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Drug Repurposing Based on a Recommendation System and Drug-Drug Functional Pathway Similarity.
    Shao M; Jiang L; Meng Z; Xu J
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convolutional Neural Network and Bidirectional Long Short-Term Memory-Based Method for Predicting Drug-Disease Associations.
    Xuan P; Ye Y; Zhang T; Zhao L; Sun C
    Cells; 2019 Jul; 8(7):. PubMed ID: 31336774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DRIMC: an improved drug repositioning approach using Bayesian inductive matrix completion.
    Zhang W; Xu H; Li X; Gao Q; Wang L
    Bioinformatics; 2020 May; 36(9):2839-2847. PubMed ID: 31999326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug-Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information.
    Li Y; Sun C; Wei JM; Liu J
    Bioinformatics; 2022 Nov; 38(22):5073-5080. PubMed ID: 36111859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. deepDR: a network-based deep learning approach to in silico drug repositioning.
    Zeng X; Zhu S; Liu X; Zhou Y; Nussinov R; Cheng F
    Bioinformatics; 2019 Dec; 35(24):5191-5198. PubMed ID: 31116390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and application of a knowledge network for automatic prioritization of drug mechanisms.
    Mayers M; Tu R; Steinecke D; Li TS; Queralt-Rosinach N; Su AI
    Bioinformatics; 2022 May; 38(10):2880-2891. PubMed ID: 35561182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypergraph-based logistic matrix factorization for metabolite-disease interaction prediction.
    Ma Y; Ma Y
    Bioinformatics; 2022 Jan; 38(2):435-443. PubMed ID: 34499104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DDAPRED: a computational method for predicting drug repositioning using regularized logistic matrix factorization.
    Wang X; Yan R
    J Mol Model; 2020 Feb; 26(3):60. PubMed ID: 32062701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network.
    He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J
    J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations.
    Fu G; Wang J; Domeniconi C; Yu G
    Bioinformatics; 2018 May; 34(9):1529-1537. PubMed ID: 29228285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Neural Metric Factorization for Computational Drug Repositioning.
    Yang X; Yang G; Chu J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):731-741. PubMed ID: 35061591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug-drug links based on graph neural network.
    Cui C; Ding X; Wang D; Chen L; Xiao F; Xu T; Zheng M; Luo X; Jiang H; Chen K
    Bioinformatics; 2021 Sep; 37(18):2930-2937. PubMed ID: 33739367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.
    Wu G; Liu J; Wang C
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From drug repositioning to target repositioning: prediction of therapeutic targets using genetically perturbed transcriptomic signatures.
    Namba S; Iwata M; Yamanishi Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i68-i76. PubMed ID: 35758779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources.
    Muniyappan S; Rayan AXA; Varrieth GT
    J Biomed Inform; 2023 Nov; 147():104528. PubMed ID: 37858852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.