These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34875060)

  • 1. Stimulation of dissimilatory sulfate reduction in response to sulfate in microcosm incubations from two contrasting temperate peatlands near Ithaca, NY, USA.
    St James AR; Richardson RE
    FEMS Microbiol Lett; 2021 Dec; 368(21-24):. PubMed ID: 34875060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland.
    Pester M; Bittner N; Deevong P; Wagner M; Loy A
    ISME J; 2010 Dec; 4(12):1591-602. PubMed ID: 20535221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil.
    Liu P; Pommerenke B; Conrad R
    Environ Microbiol; 2018 Jan; 20(1):337-354. PubMed ID: 29160027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms.
    Hausmann B; Knorr KH; Schreck K; Tringe SG; Glavina Del Rio T; Loy A; Pester M
    ISME J; 2016 Oct; 10(10):2365-75. PubMed ID: 27015005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology.
    Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane.
    Basen M; Krüger M; Milucka J; Kuever J; Kahnt J; Grundmann O; Meyerdierks A; Widdel F; Shima S
    Environ Microbiol; 2011 May; 13(5):1370-9. PubMed ID: 21392199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA.
    Cadillo-Quiroz H; Bräuer S; Yashiro E; Sun C; Yavitt J; Zinder S
    Environ Microbiol; 2006 Aug; 8(8):1428-40. PubMed ID: 16872405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.
    Reumer M; Harnisz M; Lee HJ; Reim A; Grunert O; Putkinen A; Fritze H; Bodelier PLE; Ho A
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methanogenic and Sulfate-Reducing Activities in a Hypersaline Microbial Mat and Associated Microbial Diversity.
    Cadena S; García-Maldonado JQ; López-Lozano NE; Cervantes FJ
    Microb Ecol; 2018 May; 75(4):930-940. PubMed ID: 29116347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil.
    Liu P; Conrad R
    Environ Microbiol; 2017 Apr; 19(4):1669-1686. PubMed ID: 28198083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions.
    Laban NA; Dao A; Foght J
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25873466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers.
    Miletto M; Williams KH; N'Guessan AL; Lovley DR
    Appl Environ Microbiol; 2011 Sep; 77(18):6502-9. PubMed ID: 21764959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microorganisms with novel dissimilatory (bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands.
    Steger D; Wentrup C; Braunegger C; Deevong P; Hofer M; Richter A; Baranyi C; Pester M; Wagner M; Loy A
    Appl Environ Microbiol; 2011 Feb; 77(4):1231-42. PubMed ID: 21169452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peat: home to novel syntrophic species that feed acetate- and hydrogen-scavenging methanogens.
    Schmidt O; Hink L; Horn MA; Drake HL
    ISME J; 2016 Aug; 10(8):1954-66. PubMed ID: 26771931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments.
    Nercessian O; Bienvenu N; Moreira D; Prieur D; Jeanthon C
    Environ Microbiol; 2005 Jan; 7(1):118-32. PubMed ID: 15643942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium".
    Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059
    [No Abstract]   [Full Text] [Related]  

  • 17. Phylogenetic analysis reveals multiple lateral transfers of adenosine-5'-phosphosulfate reductase genes among sulfate-reducing microorganisms.
    Friedrich MW
    J Bacteriol; 2002 Jan; 184(1):278-89. PubMed ID: 11741869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable carbon isotope fractionation by sulfate-reducing bacteria.
    Londry KL; Des Marais DJ
    Appl Environ Microbiol; 2003 May; 69(5):2942-9. PubMed ID: 12732570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area.
    Kraft B; Engelen B; Goldhammer T; Lin YS; Cypionka H; Könneke M
    FEMS Microbiol Ecol; 2013 Apr; 84(1):86-97. PubMed ID: 23157459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies.
    Zhang M; Xiong J; Zhou L; Li J; Fan J; Li X; Zhang T; Yin Z; Yin H; Liu X; Meng D
    J Hazard Mater; 2023 Oct; 459():132256. PubMed ID: 37567138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.