These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34875295)

  • 1. Deep groundwater physicochemical components affecting actinide migration.
    Kirishima A; Terasaki M; Miyakawa K; Okamoto Y; Akiyama D
    Chemosphere; 2022 Feb; 289():133181. PubMed ID: 34875295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of rare earth elements and components of the Horonobe deep groundwater.
    Kirishima A; Kuno A; Amamiya H; Kubota T; Kimuro S; Amano Y; Miyakawa K; Iwatsuki T; Mizuno T; Sasaki T; Sato N
    Chemosphere; 2017 Feb; 168():798-806. PubMed ID: 27865443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of actinides in groundwater samples collected near deep nuclear waste repositories.
    Novikov AP; Vlasova IE; Safonov AV; Ermolaev VM; Zakharova EV; Kalmykov SN
    J Environ Radioact; 2018 Dec; 192():334-341. PubMed ID: 30031315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of saline groundwater at Horonobe, Hokkaido, Japan by SEC-UV-ICP-MS: speciation of uranium and iodine.
    Kozai N; Ohnuki T; Iwatsuki T
    Water Res; 2013 Mar; 47(4):1570-84. PubMed ID: 23295069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: a review.
    Tan X; Fang M; Wang X
    Molecules; 2010 Nov; 15(11):8431-68. PubMed ID: 21085087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare earth elements and yttrium as tracers of waste/rock-groundwater interactions.
    Cendón DI; Rowling B; Hughes CE; Payne TE; Hankin SI; Harrison JJ; Peterson MA; Stopic A; Wong H; Gadd P
    Sci Total Environ; 2022 Jul; 830():154706. PubMed ID: 35331767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actinide geochemistry: from the molecular level to the real system.
    Geckeis H; Rabung T
    J Contam Hydrol; 2008 Dec; 102(3-4):187-95. PubMed ID: 19008017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep microbial life in high-quality granitic groundwater from geochemically and geographically distinct underground boreholes.
    Ino K; Konno U; Kouduka M; Hirota A; Togo YS; Fukuda A; Komatsu D; Tsunogai U; Tanabe AS; Yamamoto S; Iwatsuki T; Mizuno T; Ito K; Suzuki Y
    Environ Microbiol Rep; 2016 Apr; 8(2):285-94. PubMed ID: 26743638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranium speciation as a function of depth in contaminated hanford sediments--a micro-XRF, micro-XRD, and micro- and bulk-XAFS study.
    Singer DM; Zachara JM; Brown GE
    Environ Sci Technol; 2009 Feb; 43(3):630-6. PubMed ID: 19244994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multicoordinate ligands for actinide/lanthanide separations.
    Dam HH; Reinhoudt DN; Verboom W
    Chem Soc Rev; 2007 Feb; 36(2):367-77. PubMed ID: 17264937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical separations of lanthanides and actinides by capillary electrophoresis.
    Janoš P
    Electrophoresis; 2003 Jun; 24(12-13):1982-1992. PubMed ID: 12858369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: a hybrid approach.
    Maxwell SL; Jones VD
    Talanta; 2009 Nov; 80(1):143-50. PubMed ID: 19782204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geomicrobiological properties of ultra-deep granitic groundwater from the Mizunami Underground Research Laboratory (MIU), central Japan.
    Fukuda A; Hagiwara H; Ishimura T; Kouduka M; Ioka S; Amano Y; Tsunogai U; Suzuki Y; Mizuno T
    Microb Ecol; 2010 Jul; 60(1):214-25. PubMed ID: 20473491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk of colloidal and pseudo-colloidal transport of actinides in nitrate contaminated groundwater near a radioactive waste repository after bioremediation.
    Safonov A; Lavrinovich E; Emel'yanov A; Boldyrev K; Kuryakov V; Rodygina N; Zakharova E; Novikov A
    Sci Rep; 2022 Mar; 12(1):4557. PubMed ID: 35296759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming lanthanide and actinide chemistry with nanoparticles.
    Pallares RM; Abergel RJ
    Nanoscale; 2020 Jan; 12(3):1339-1348. PubMed ID: 31859321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes.
    Ali M; Kumar A; Kumar M; Pandey BN
    Biochimie; 2016 Apr; 123():117-29. PubMed ID: 26821345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical microscopy observations of rat enterocytes after oral administration of soluble salts of lanthanides, actinides and elements of group III-A of the periodic chart.
    Floren C; Tekaya L; Escaig F; Labejof L; Mouthon G; Galle P
    Cell Mol Biol (Noisy-le-grand); 2001 May; 47(3):419-25. PubMed ID: 11441948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swedish-German actinide migration experiment at ASPO hard rock laboratory.
    Kienzler B; Vejmelka P; Römer J; Fanghänel E; Jansson M; Eriksen TE; Wikberg P
    J Contam Hydrol; 2003 Mar; 61(1-4):219-33. PubMed ID: 12598106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerator Mass Spectrometry of Actinides in Ground- and Seawater: An Innovative Method Allowing for the Simultaneous Analysis of U, Np, Pu, Am, and Cm Isotopes below ppq Levels.
    Quinto F; Golser R; Lagos M; Plaschke M; Schäfer T; Steier P; Geckeis H
    Anal Chem; 2015 Jun; 87(11):5766-73. PubMed ID: 25938849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of actinides from dilute waste actinide solution by egg-shell membrane.
    Ishikawa S; Suyama K; Satoh I
    Appl Biochem Biotechnol; 1999; 77-79():521-33. PubMed ID: 10399285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.